| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hlhilset.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hlhilset.l |  |-  L = ( ( HLHil ` K ) ` W ) | 
						
							| 3 |  | hlhilset.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 4 |  | hlhilset.v |  |-  V = ( Base ` U ) | 
						
							| 5 |  | hlhilset.p |  |-  .+ = ( +g ` U ) | 
						
							| 6 |  | hlhilset.e |  |-  E = ( ( EDRing ` K ) ` W ) | 
						
							| 7 |  | hlhilset.g |  |-  G = ( ( HGMap ` K ) ` W ) | 
						
							| 8 |  | hlhilset.r |  |-  R = ( E sSet <. ( *r ` ndx ) , G >. ) | 
						
							| 9 |  | hlhilset.t |  |-  .x. = ( .s ` U ) | 
						
							| 10 |  | hlhilset.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 11 |  | hlhilset.i |  |-  ., = ( x e. V , y e. V |-> ( ( S ` y ) ` x ) ) | 
						
							| 12 |  | hlhilset.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 13 |  | elex |  |-  ( K e. HL -> K e. _V ) | 
						
							| 14 | 13 | adantr |  |-  ( ( K e. HL /\ W e. H ) -> K e. _V ) | 
						
							| 15 | 12 14 | syl |  |-  ( ph -> K e. _V ) | 
						
							| 16 | 1 | fvexi |  |-  H e. _V | 
						
							| 17 | 16 | mptex |  |-  ( w e. H |-> [_ K / k ]_ [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) ) e. _V | 
						
							| 18 |  | nfcv |  |-  F/_ k K | 
						
							| 19 |  | nfcv |  |-  F/_ k H | 
						
							| 20 |  | nfcsb1v |  |-  F/_ k [_ K / k ]_ [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) | 
						
							| 21 | 19 20 | nfmpt |  |-  F/_ k ( w e. H |-> [_ K / k ]_ [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) ) | 
						
							| 22 |  | fveq2 |  |-  ( k = K -> ( LHyp ` k ) = ( LHyp ` K ) ) | 
						
							| 23 | 22 1 | eqtr4di |  |-  ( k = K -> ( LHyp ` k ) = H ) | 
						
							| 24 |  | csbeq1a |  |-  ( k = K -> [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) = [_ K / k ]_ [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) ) | 
						
							| 25 | 23 24 | mpteq12dv |  |-  ( k = K -> ( w e. ( LHyp ` k ) |-> [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) ) = ( w e. H |-> [_ K / k ]_ [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) ) ) | 
						
							| 26 |  | df-hlhil |  |-  HLHil = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) ) ) | 
						
							| 27 | 18 21 25 26 | fvmptf |  |-  ( ( K e. _V /\ ( w e. H |-> [_ K / k ]_ [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) ) e. _V ) -> ( HLHil ` K ) = ( w e. H |-> [_ K / k ]_ [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) ) ) | 
						
							| 28 | 15 17 27 | sylancl |  |-  ( ph -> ( HLHil ` K ) = ( w e. H |-> [_ K / k ]_ [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) ) ) | 
						
							| 29 | 15 | adantr |  |-  ( ( ph /\ w = W ) -> K e. _V ) | 
						
							| 30 |  | fvexd |  |-  ( ( ( ph /\ w = W ) /\ k = K ) -> ( ( DVecH ` k ) ` w ) e. _V ) | 
						
							| 31 |  | fvexd |  |-  ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) -> ( Base ` u ) e. _V ) | 
						
							| 32 |  | id |  |-  ( v = ( Base ` u ) -> v = ( Base ` u ) ) | 
						
							| 33 |  | id |  |-  ( u = ( ( DVecH ` k ) ` w ) -> u = ( ( DVecH ` k ) ` w ) ) | 
						
							| 34 |  | simpr |  |-  ( ( ( ph /\ w = W ) /\ k = K ) -> k = K ) | 
						
							| 35 | 34 | fveq2d |  |-  ( ( ( ph /\ w = W ) /\ k = K ) -> ( DVecH ` k ) = ( DVecH ` K ) ) | 
						
							| 36 |  | simplr |  |-  ( ( ( ph /\ w = W ) /\ k = K ) -> w = W ) | 
						
							| 37 | 35 36 | fveq12d |  |-  ( ( ( ph /\ w = W ) /\ k = K ) -> ( ( DVecH ` k ) ` w ) = ( ( DVecH ` K ) ` W ) ) | 
						
							| 38 | 37 3 | eqtr4di |  |-  ( ( ( ph /\ w = W ) /\ k = K ) -> ( ( DVecH ` k ) ` w ) = U ) | 
						
							| 39 | 33 38 | sylan9eqr |  |-  ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) -> u = U ) | 
						
							| 40 | 39 | fveq2d |  |-  ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) -> ( Base ` u ) = ( Base ` U ) ) | 
						
							| 41 | 40 4 | eqtr4di |  |-  ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) -> ( Base ` u ) = V ) | 
						
							| 42 | 32 41 | sylan9eqr |  |-  ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> v = V ) | 
						
							| 43 | 42 | opeq2d |  |-  ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> <. ( Base ` ndx ) , v >. = <. ( Base ` ndx ) , V >. ) | 
						
							| 44 | 39 | adantr |  |-  ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> u = U ) | 
						
							| 45 | 44 | fveq2d |  |-  ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> ( +g ` u ) = ( +g ` U ) ) | 
						
							| 46 | 45 5 | eqtr4di |  |-  ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> ( +g ` u ) = .+ ) | 
						
							| 47 | 46 | opeq2d |  |-  ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> <. ( +g ` ndx ) , ( +g ` u ) >. = <. ( +g ` ndx ) , .+ >. ) | 
						
							| 48 | 34 | fveq2d |  |-  ( ( ( ph /\ w = W ) /\ k = K ) -> ( EDRing ` k ) = ( EDRing ` K ) ) | 
						
							| 49 | 48 36 | fveq12d |  |-  ( ( ( ph /\ w = W ) /\ k = K ) -> ( ( EDRing ` k ) ` w ) = ( ( EDRing ` K ) ` W ) ) | 
						
							| 50 | 49 6 | eqtr4di |  |-  ( ( ( ph /\ w = W ) /\ k = K ) -> ( ( EDRing ` k ) ` w ) = E ) | 
						
							| 51 | 34 | fveq2d |  |-  ( ( ( ph /\ w = W ) /\ k = K ) -> ( HGMap ` k ) = ( HGMap ` K ) ) | 
						
							| 52 | 51 36 | fveq12d |  |-  ( ( ( ph /\ w = W ) /\ k = K ) -> ( ( HGMap ` k ) ` w ) = ( ( HGMap ` K ) ` W ) ) | 
						
							| 53 | 52 7 | eqtr4di |  |-  ( ( ( ph /\ w = W ) /\ k = K ) -> ( ( HGMap ` k ) ` w ) = G ) | 
						
							| 54 | 53 | opeq2d |  |-  ( ( ( ph /\ w = W ) /\ k = K ) -> <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. = <. ( *r ` ndx ) , G >. ) | 
						
							| 55 | 50 54 | oveq12d |  |-  ( ( ( ph /\ w = W ) /\ k = K ) -> ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) = ( E sSet <. ( *r ` ndx ) , G >. ) ) | 
						
							| 56 | 55 8 | eqtr4di |  |-  ( ( ( ph /\ w = W ) /\ k = K ) -> ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) = R ) | 
						
							| 57 | 56 | opeq2d |  |-  ( ( ( ph /\ w = W ) /\ k = K ) -> <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. = <. ( Scalar ` ndx ) , R >. ) | 
						
							| 58 | 57 | ad2antrr |  |-  ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. = <. ( Scalar ` ndx ) , R >. ) | 
						
							| 59 | 43 47 58 | tpeq123d |  |-  ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } = { <. ( Base ` ndx ) , V >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , R >. } ) | 
						
							| 60 | 44 | fveq2d |  |-  ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> ( .s ` u ) = ( .s ` U ) ) | 
						
							| 61 | 60 9 | eqtr4di |  |-  ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> ( .s ` u ) = .x. ) | 
						
							| 62 | 61 | opeq2d |  |-  ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> <. ( .s ` ndx ) , ( .s ` u ) >. = <. ( .s ` ndx ) , .x. >. ) | 
						
							| 63 | 34 | fveq2d |  |-  ( ( ( ph /\ w = W ) /\ k = K ) -> ( HDMap ` k ) = ( HDMap ` K ) ) | 
						
							| 64 | 63 36 | fveq12d |  |-  ( ( ( ph /\ w = W ) /\ k = K ) -> ( ( HDMap ` k ) ` w ) = ( ( HDMap ` K ) ` W ) ) | 
						
							| 65 | 64 10 | eqtr4di |  |-  ( ( ( ph /\ w = W ) /\ k = K ) -> ( ( HDMap ` k ) ` w ) = S ) | 
						
							| 66 | 65 | ad2antrr |  |-  ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> ( ( HDMap ` k ) ` w ) = S ) | 
						
							| 67 | 66 | fveq1d |  |-  ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> ( ( ( HDMap ` k ) ` w ) ` y ) = ( S ` y ) ) | 
						
							| 68 | 67 | fveq1d |  |-  ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) = ( ( S ` y ) ` x ) ) | 
						
							| 69 | 42 42 68 | mpoeq123dv |  |-  ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) = ( x e. V , y e. V |-> ( ( S ` y ) ` x ) ) ) | 
						
							| 70 | 69 11 | eqtr4di |  |-  ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) = ., ) | 
						
							| 71 | 70 | opeq2d |  |-  ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. = <. ( .i ` ndx ) , ., >. ) | 
						
							| 72 | 62 71 | preq12d |  |-  ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } = { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) | 
						
							| 73 | 59 72 | uneq12d |  |-  ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) = ( { <. ( Base ` ndx ) , V >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) ) | 
						
							| 74 | 31 73 | csbied |  |-  ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) -> [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) = ( { <. ( Base ` ndx ) , V >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) ) | 
						
							| 75 | 30 74 | csbied |  |-  ( ( ( ph /\ w = W ) /\ k = K ) -> [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) = ( { <. ( Base ` ndx ) , V >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) ) | 
						
							| 76 | 29 75 | csbied |  |-  ( ( ph /\ w = W ) -> [_ K / k ]_ [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) = ( { <. ( Base ` ndx ) , V >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) ) | 
						
							| 77 | 12 | simprd |  |-  ( ph -> W e. H ) | 
						
							| 78 |  | tpex |  |-  { <. ( Base ` ndx ) , V >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , R >. } e. _V | 
						
							| 79 |  | prex |  |-  { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } e. _V | 
						
							| 80 | 78 79 | unex |  |-  ( { <. ( Base ` ndx ) , V >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) e. _V | 
						
							| 81 | 80 | a1i |  |-  ( ph -> ( { <. ( Base ` ndx ) , V >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) e. _V ) | 
						
							| 82 | 28 76 77 81 | fvmptd |  |-  ( ph -> ( ( HLHil ` K ) ` W ) = ( { <. ( Base ` ndx ) , V >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) ) | 
						
							| 83 | 2 82 | eqtrid |  |-  ( ph -> L = ( { <. ( Base ` ndx ) , V >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) ) |