| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hlhilset.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hlhilset.l |
|- L = ( ( HLHil ` K ) ` W ) |
| 3 |
|
hlhilset.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 4 |
|
hlhilset.v |
|- V = ( Base ` U ) |
| 5 |
|
hlhilset.p |
|- .+ = ( +g ` U ) |
| 6 |
|
hlhilset.e |
|- E = ( ( EDRing ` K ) ` W ) |
| 7 |
|
hlhilset.g |
|- G = ( ( HGMap ` K ) ` W ) |
| 8 |
|
hlhilset.r |
|- R = ( E sSet <. ( *r ` ndx ) , G >. ) |
| 9 |
|
hlhilset.t |
|- .x. = ( .s ` U ) |
| 10 |
|
hlhilset.s |
|- S = ( ( HDMap ` K ) ` W ) |
| 11 |
|
hlhilset.i |
|- ., = ( x e. V , y e. V |-> ( ( S ` y ) ` x ) ) |
| 12 |
|
hlhilset.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 13 |
|
elex |
|- ( K e. HL -> K e. _V ) |
| 14 |
13
|
adantr |
|- ( ( K e. HL /\ W e. H ) -> K e. _V ) |
| 15 |
12 14
|
syl |
|- ( ph -> K e. _V ) |
| 16 |
1
|
fvexi |
|- H e. _V |
| 17 |
16
|
mptex |
|- ( w e. H |-> [_ K / k ]_ [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) ) e. _V |
| 18 |
|
nfcv |
|- F/_ k K |
| 19 |
|
nfcv |
|- F/_ k H |
| 20 |
|
nfcsb1v |
|- F/_ k [_ K / k ]_ [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) |
| 21 |
19 20
|
nfmpt |
|- F/_ k ( w e. H |-> [_ K / k ]_ [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) ) |
| 22 |
|
fveq2 |
|- ( k = K -> ( LHyp ` k ) = ( LHyp ` K ) ) |
| 23 |
22 1
|
eqtr4di |
|- ( k = K -> ( LHyp ` k ) = H ) |
| 24 |
|
csbeq1a |
|- ( k = K -> [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) = [_ K / k ]_ [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) ) |
| 25 |
23 24
|
mpteq12dv |
|- ( k = K -> ( w e. ( LHyp ` k ) |-> [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) ) = ( w e. H |-> [_ K / k ]_ [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) ) ) |
| 26 |
|
df-hlhil |
|- HLHil = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) ) ) |
| 27 |
18 21 25 26
|
fvmptf |
|- ( ( K e. _V /\ ( w e. H |-> [_ K / k ]_ [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) ) e. _V ) -> ( HLHil ` K ) = ( w e. H |-> [_ K / k ]_ [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) ) ) |
| 28 |
15 17 27
|
sylancl |
|- ( ph -> ( HLHil ` K ) = ( w e. H |-> [_ K / k ]_ [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) ) ) |
| 29 |
15
|
adantr |
|- ( ( ph /\ w = W ) -> K e. _V ) |
| 30 |
|
fvexd |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> ( ( DVecH ` k ) ` w ) e. _V ) |
| 31 |
|
fvexd |
|- ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) -> ( Base ` u ) e. _V ) |
| 32 |
|
id |
|- ( v = ( Base ` u ) -> v = ( Base ` u ) ) |
| 33 |
|
id |
|- ( u = ( ( DVecH ` k ) ` w ) -> u = ( ( DVecH ` k ) ` w ) ) |
| 34 |
|
simpr |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> k = K ) |
| 35 |
34
|
fveq2d |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> ( DVecH ` k ) = ( DVecH ` K ) ) |
| 36 |
|
simplr |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> w = W ) |
| 37 |
35 36
|
fveq12d |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> ( ( DVecH ` k ) ` w ) = ( ( DVecH ` K ) ` W ) ) |
| 38 |
37 3
|
eqtr4di |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> ( ( DVecH ` k ) ` w ) = U ) |
| 39 |
33 38
|
sylan9eqr |
|- ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) -> u = U ) |
| 40 |
39
|
fveq2d |
|- ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) -> ( Base ` u ) = ( Base ` U ) ) |
| 41 |
40 4
|
eqtr4di |
|- ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) -> ( Base ` u ) = V ) |
| 42 |
32 41
|
sylan9eqr |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> v = V ) |
| 43 |
42
|
opeq2d |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> <. ( Base ` ndx ) , v >. = <. ( Base ` ndx ) , V >. ) |
| 44 |
39
|
adantr |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> u = U ) |
| 45 |
44
|
fveq2d |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> ( +g ` u ) = ( +g ` U ) ) |
| 46 |
45 5
|
eqtr4di |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> ( +g ` u ) = .+ ) |
| 47 |
46
|
opeq2d |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> <. ( +g ` ndx ) , ( +g ` u ) >. = <. ( +g ` ndx ) , .+ >. ) |
| 48 |
34
|
fveq2d |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> ( EDRing ` k ) = ( EDRing ` K ) ) |
| 49 |
48 36
|
fveq12d |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> ( ( EDRing ` k ) ` w ) = ( ( EDRing ` K ) ` W ) ) |
| 50 |
49 6
|
eqtr4di |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> ( ( EDRing ` k ) ` w ) = E ) |
| 51 |
34
|
fveq2d |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> ( HGMap ` k ) = ( HGMap ` K ) ) |
| 52 |
51 36
|
fveq12d |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> ( ( HGMap ` k ) ` w ) = ( ( HGMap ` K ) ` W ) ) |
| 53 |
52 7
|
eqtr4di |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> ( ( HGMap ` k ) ` w ) = G ) |
| 54 |
53
|
opeq2d |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. = <. ( *r ` ndx ) , G >. ) |
| 55 |
50 54
|
oveq12d |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) = ( E sSet <. ( *r ` ndx ) , G >. ) ) |
| 56 |
55 8
|
eqtr4di |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) = R ) |
| 57 |
56
|
opeq2d |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. = <. ( Scalar ` ndx ) , R >. ) |
| 58 |
57
|
ad2antrr |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. = <. ( Scalar ` ndx ) , R >. ) |
| 59 |
43 47 58
|
tpeq123d |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } = { <. ( Base ` ndx ) , V >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , R >. } ) |
| 60 |
44
|
fveq2d |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> ( .s ` u ) = ( .s ` U ) ) |
| 61 |
60 9
|
eqtr4di |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> ( .s ` u ) = .x. ) |
| 62 |
61
|
opeq2d |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> <. ( .s ` ndx ) , ( .s ` u ) >. = <. ( .s ` ndx ) , .x. >. ) |
| 63 |
34
|
fveq2d |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> ( HDMap ` k ) = ( HDMap ` K ) ) |
| 64 |
63 36
|
fveq12d |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> ( ( HDMap ` k ) ` w ) = ( ( HDMap ` K ) ` W ) ) |
| 65 |
64 10
|
eqtr4di |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> ( ( HDMap ` k ) ` w ) = S ) |
| 66 |
65
|
ad2antrr |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> ( ( HDMap ` k ) ` w ) = S ) |
| 67 |
66
|
fveq1d |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> ( ( ( HDMap ` k ) ` w ) ` y ) = ( S ` y ) ) |
| 68 |
67
|
fveq1d |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) = ( ( S ` y ) ` x ) ) |
| 69 |
42 42 68
|
mpoeq123dv |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) = ( x e. V , y e. V |-> ( ( S ` y ) ` x ) ) ) |
| 70 |
69 11
|
eqtr4di |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) = ., ) |
| 71 |
70
|
opeq2d |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. = <. ( .i ` ndx ) , ., >. ) |
| 72 |
62 71
|
preq12d |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } = { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) |
| 73 |
59 72
|
uneq12d |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) = ( { <. ( Base ` ndx ) , V >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) ) |
| 74 |
31 73
|
csbied |
|- ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) -> [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) = ( { <. ( Base ` ndx ) , V >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) ) |
| 75 |
30 74
|
csbied |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) = ( { <. ( Base ` ndx ) , V >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) ) |
| 76 |
29 75
|
csbied |
|- ( ( ph /\ w = W ) -> [_ K / k ]_ [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) = ( { <. ( Base ` ndx ) , V >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) ) |
| 77 |
12
|
simprd |
|- ( ph -> W e. H ) |
| 78 |
|
tpex |
|- { <. ( Base ` ndx ) , V >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , R >. } e. _V |
| 79 |
|
prex |
|- { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } e. _V |
| 80 |
78 79
|
unex |
|- ( { <. ( Base ` ndx ) , V >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) e. _V |
| 81 |
80
|
a1i |
|- ( ph -> ( { <. ( Base ` ndx ) , V >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) e. _V ) |
| 82 |
28 76 77 81
|
fvmptd |
|- ( ph -> ( ( HLHil ` K ) ` W ) = ( { <. ( Base ` ndx ) , V >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) ) |
| 83 |
2 82
|
eqtrid |
|- ( ph -> L = ( { <. ( Base ` ndx ) , V >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) ) |