Step |
Hyp |
Ref |
Expression |
1 |
|
hlhilset.h |
|- H = ( LHyp ` K ) |
2 |
|
hlhilset.l |
|- L = ( ( HLHil ` K ) ` W ) |
3 |
|
hlhilset.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
hlhilset.v |
|- V = ( Base ` U ) |
5 |
|
hlhilset.p |
|- .+ = ( +g ` U ) |
6 |
|
hlhilset.e |
|- E = ( ( EDRing ` K ) ` W ) |
7 |
|
hlhilset.g |
|- G = ( ( HGMap ` K ) ` W ) |
8 |
|
hlhilset.r |
|- R = ( E sSet <. ( *r ` ndx ) , G >. ) |
9 |
|
hlhilset.t |
|- .x. = ( .s ` U ) |
10 |
|
hlhilset.s |
|- S = ( ( HDMap ` K ) ` W ) |
11 |
|
hlhilset.i |
|- ., = ( x e. V , y e. V |-> ( ( S ` y ) ` x ) ) |
12 |
|
hlhilset.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
13 |
|
elex |
|- ( K e. HL -> K e. _V ) |
14 |
13
|
adantr |
|- ( ( K e. HL /\ W e. H ) -> K e. _V ) |
15 |
12 14
|
syl |
|- ( ph -> K e. _V ) |
16 |
1
|
fvexi |
|- H e. _V |
17 |
16
|
mptex |
|- ( w e. H |-> [_ K / k ]_ [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) ) e. _V |
18 |
|
nfcv |
|- F/_ k K |
19 |
|
nfcv |
|- F/_ k H |
20 |
|
nfcsb1v |
|- F/_ k [_ K / k ]_ [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) |
21 |
19 20
|
nfmpt |
|- F/_ k ( w e. H |-> [_ K / k ]_ [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) ) |
22 |
|
fveq2 |
|- ( k = K -> ( LHyp ` k ) = ( LHyp ` K ) ) |
23 |
22 1
|
eqtr4di |
|- ( k = K -> ( LHyp ` k ) = H ) |
24 |
|
csbeq1a |
|- ( k = K -> [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) = [_ K / k ]_ [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) ) |
25 |
23 24
|
mpteq12dv |
|- ( k = K -> ( w e. ( LHyp ` k ) |-> [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) ) = ( w e. H |-> [_ K / k ]_ [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) ) ) |
26 |
|
df-hlhil |
|- HLHil = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) ) ) |
27 |
18 21 25 26
|
fvmptf |
|- ( ( K e. _V /\ ( w e. H |-> [_ K / k ]_ [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) ) e. _V ) -> ( HLHil ` K ) = ( w e. H |-> [_ K / k ]_ [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) ) ) |
28 |
15 17 27
|
sylancl |
|- ( ph -> ( HLHil ` K ) = ( w e. H |-> [_ K / k ]_ [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) ) ) |
29 |
15
|
adantr |
|- ( ( ph /\ w = W ) -> K e. _V ) |
30 |
|
fvexd |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> ( ( DVecH ` k ) ` w ) e. _V ) |
31 |
|
fvexd |
|- ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) -> ( Base ` u ) e. _V ) |
32 |
|
id |
|- ( v = ( Base ` u ) -> v = ( Base ` u ) ) |
33 |
|
id |
|- ( u = ( ( DVecH ` k ) ` w ) -> u = ( ( DVecH ` k ) ` w ) ) |
34 |
|
simpr |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> k = K ) |
35 |
34
|
fveq2d |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> ( DVecH ` k ) = ( DVecH ` K ) ) |
36 |
|
simplr |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> w = W ) |
37 |
35 36
|
fveq12d |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> ( ( DVecH ` k ) ` w ) = ( ( DVecH ` K ) ` W ) ) |
38 |
37 3
|
eqtr4di |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> ( ( DVecH ` k ) ` w ) = U ) |
39 |
33 38
|
sylan9eqr |
|- ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) -> u = U ) |
40 |
39
|
fveq2d |
|- ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) -> ( Base ` u ) = ( Base ` U ) ) |
41 |
40 4
|
eqtr4di |
|- ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) -> ( Base ` u ) = V ) |
42 |
32 41
|
sylan9eqr |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> v = V ) |
43 |
42
|
opeq2d |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> <. ( Base ` ndx ) , v >. = <. ( Base ` ndx ) , V >. ) |
44 |
39
|
adantr |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> u = U ) |
45 |
44
|
fveq2d |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> ( +g ` u ) = ( +g ` U ) ) |
46 |
45 5
|
eqtr4di |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> ( +g ` u ) = .+ ) |
47 |
46
|
opeq2d |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> <. ( +g ` ndx ) , ( +g ` u ) >. = <. ( +g ` ndx ) , .+ >. ) |
48 |
34
|
fveq2d |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> ( EDRing ` k ) = ( EDRing ` K ) ) |
49 |
48 36
|
fveq12d |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> ( ( EDRing ` k ) ` w ) = ( ( EDRing ` K ) ` W ) ) |
50 |
49 6
|
eqtr4di |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> ( ( EDRing ` k ) ` w ) = E ) |
51 |
34
|
fveq2d |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> ( HGMap ` k ) = ( HGMap ` K ) ) |
52 |
51 36
|
fveq12d |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> ( ( HGMap ` k ) ` w ) = ( ( HGMap ` K ) ` W ) ) |
53 |
52 7
|
eqtr4di |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> ( ( HGMap ` k ) ` w ) = G ) |
54 |
53
|
opeq2d |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. = <. ( *r ` ndx ) , G >. ) |
55 |
50 54
|
oveq12d |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) = ( E sSet <. ( *r ` ndx ) , G >. ) ) |
56 |
55 8
|
eqtr4di |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) = R ) |
57 |
56
|
opeq2d |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. = <. ( Scalar ` ndx ) , R >. ) |
58 |
57
|
ad2antrr |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. = <. ( Scalar ` ndx ) , R >. ) |
59 |
43 47 58
|
tpeq123d |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } = { <. ( Base ` ndx ) , V >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , R >. } ) |
60 |
44
|
fveq2d |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> ( .s ` u ) = ( .s ` U ) ) |
61 |
60 9
|
eqtr4di |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> ( .s ` u ) = .x. ) |
62 |
61
|
opeq2d |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> <. ( .s ` ndx ) , ( .s ` u ) >. = <. ( .s ` ndx ) , .x. >. ) |
63 |
34
|
fveq2d |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> ( HDMap ` k ) = ( HDMap ` K ) ) |
64 |
63 36
|
fveq12d |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> ( ( HDMap ` k ) ` w ) = ( ( HDMap ` K ) ` W ) ) |
65 |
64 10
|
eqtr4di |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> ( ( HDMap ` k ) ` w ) = S ) |
66 |
65
|
ad2antrr |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> ( ( HDMap ` k ) ` w ) = S ) |
67 |
66
|
fveq1d |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> ( ( ( HDMap ` k ) ` w ) ` y ) = ( S ` y ) ) |
68 |
67
|
fveq1d |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) = ( ( S ` y ) ` x ) ) |
69 |
42 42 68
|
mpoeq123dv |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) = ( x e. V , y e. V |-> ( ( S ` y ) ` x ) ) ) |
70 |
69 11
|
eqtr4di |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) = ., ) |
71 |
70
|
opeq2d |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. = <. ( .i ` ndx ) , ., >. ) |
72 |
62 71
|
preq12d |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } = { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) |
73 |
59 72
|
uneq12d |
|- ( ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) /\ v = ( Base ` u ) ) -> ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) = ( { <. ( Base ` ndx ) , V >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) ) |
74 |
31 73
|
csbied |
|- ( ( ( ( ph /\ w = W ) /\ k = K ) /\ u = ( ( DVecH ` k ) ` w ) ) -> [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) = ( { <. ( Base ` ndx ) , V >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) ) |
75 |
30 74
|
csbied |
|- ( ( ( ph /\ w = W ) /\ k = K ) -> [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) = ( { <. ( Base ` ndx ) , V >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) ) |
76 |
29 75
|
csbied |
|- ( ( ph /\ w = W ) -> [_ K / k ]_ [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) = ( { <. ( Base ` ndx ) , V >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) ) |
77 |
12
|
simprd |
|- ( ph -> W e. H ) |
78 |
|
tpex |
|- { <. ( Base ` ndx ) , V >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , R >. } e. _V |
79 |
|
prex |
|- { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } e. _V |
80 |
78 79
|
unex |
|- ( { <. ( Base ` ndx ) , V >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) e. _V |
81 |
80
|
a1i |
|- ( ph -> ( { <. ( Base ` ndx ) , V >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) e. _V ) |
82 |
28 76 77 81
|
fvmptd |
|- ( ph -> ( ( HLHil ` K ) ` W ) = ( { <. ( Base ` ndx ) , V >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) ) |
83 |
2 82
|
syl5eq |
|- ( ph -> L = ( { <. ( Base ` ndx ) , V >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) ) |