Step |
Hyp |
Ref |
Expression |
1 |
|
hlhilbase.h |
|- H = ( LHyp ` K ) |
2 |
|
hlhilbase.u |
|- U = ( ( HLHil ` K ) ` W ) |
3 |
|
hlhilbase.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
4 |
|
hlhilsca.e |
|- E = ( ( EDRing ` K ) ` W ) |
5 |
|
hlhilsca.g |
|- G = ( ( HGMap ` K ) ` W ) |
6 |
|
hlhilsca.r |
|- R = ( E sSet <. ( *r ` ndx ) , G >. ) |
7 |
|
ovex |
|- ( E sSet <. ( *r ` ndx ) , G >. ) e. _V |
8 |
6 7
|
eqeltri |
|- R e. _V |
9 |
|
eqid |
|- ( { <. ( Base ` ndx ) , ( Base ` ( ( DVecH ` K ) ` W ) ) >. , <. ( +g ` ndx ) , ( +g ` ( ( DVecH ` K ) ` W ) ) >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( .s ` ( ( DVecH ` K ) ` W ) ) >. , <. ( .i ` ndx ) , ( x e. ( Base ` ( ( DVecH ` K ) ` W ) ) , y e. ( Base ` ( ( DVecH ` K ) ` W ) ) |-> ( ( ( ( HDMap ` K ) ` W ) ` y ) ` x ) ) >. } ) = ( { <. ( Base ` ndx ) , ( Base ` ( ( DVecH ` K ) ` W ) ) >. , <. ( +g ` ndx ) , ( +g ` ( ( DVecH ` K ) ` W ) ) >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( .s ` ( ( DVecH ` K ) ` W ) ) >. , <. ( .i ` ndx ) , ( x e. ( Base ` ( ( DVecH ` K ) ` W ) ) , y e. ( Base ` ( ( DVecH ` K ) ` W ) ) |-> ( ( ( ( HDMap ` K ) ` W ) ` y ) ` x ) ) >. } ) |
10 |
9
|
phlsca |
|- ( R e. _V -> R = ( Scalar ` ( { <. ( Base ` ndx ) , ( Base ` ( ( DVecH ` K ) ` W ) ) >. , <. ( +g ` ndx ) , ( +g ` ( ( DVecH ` K ) ` W ) ) >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( .s ` ( ( DVecH ` K ) ` W ) ) >. , <. ( .i ` ndx ) , ( x e. ( Base ` ( ( DVecH ` K ) ` W ) ) , y e. ( Base ` ( ( DVecH ` K ) ` W ) ) |-> ( ( ( ( HDMap ` K ) ` W ) ` y ) ` x ) ) >. } ) ) ) |
11 |
8 10
|
ax-mp |
|- R = ( Scalar ` ( { <. ( Base ` ndx ) , ( Base ` ( ( DVecH ` K ) ` W ) ) >. , <. ( +g ` ndx ) , ( +g ` ( ( DVecH ` K ) ` W ) ) >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( .s ` ( ( DVecH ` K ) ` W ) ) >. , <. ( .i ` ndx ) , ( x e. ( Base ` ( ( DVecH ` K ) ` W ) ) , y e. ( Base ` ( ( DVecH ` K ) ` W ) ) |-> ( ( ( ( HDMap ` K ) ` W ) ` y ) ` x ) ) >. } ) ) |
12 |
|
eqid |
|- ( ( DVecH ` K ) ` W ) = ( ( DVecH ` K ) ` W ) |
13 |
|
eqid |
|- ( Base ` ( ( DVecH ` K ) ` W ) ) = ( Base ` ( ( DVecH ` K ) ` W ) ) |
14 |
|
eqid |
|- ( +g ` ( ( DVecH ` K ) ` W ) ) = ( +g ` ( ( DVecH ` K ) ` W ) ) |
15 |
|
eqid |
|- ( .s ` ( ( DVecH ` K ) ` W ) ) = ( .s ` ( ( DVecH ` K ) ` W ) ) |
16 |
|
eqid |
|- ( ( HDMap ` K ) ` W ) = ( ( HDMap ` K ) ` W ) |
17 |
|
eqid |
|- ( x e. ( Base ` ( ( DVecH ` K ) ` W ) ) , y e. ( Base ` ( ( DVecH ` K ) ` W ) ) |-> ( ( ( ( HDMap ` K ) ` W ) ` y ) ` x ) ) = ( x e. ( Base ` ( ( DVecH ` K ) ` W ) ) , y e. ( Base ` ( ( DVecH ` K ) ` W ) ) |-> ( ( ( ( HDMap ` K ) ` W ) ` y ) ` x ) ) |
18 |
1 2 12 13 14 4 5 6 15 16 17 3
|
hlhilset |
|- ( ph -> U = ( { <. ( Base ` ndx ) , ( Base ` ( ( DVecH ` K ) ` W ) ) >. , <. ( +g ` ndx ) , ( +g ` ( ( DVecH ` K ) ` W ) ) >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( .s ` ( ( DVecH ` K ) ` W ) ) >. , <. ( .i ` ndx ) , ( x e. ( Base ` ( ( DVecH ` K ) ` W ) ) , y e. ( Base ` ( ( DVecH ` K ) ` W ) ) |-> ( ( ( ( HDMap ` K ) ` W ) ` y ) ` x ) ) >. } ) ) |
19 |
18
|
fveq2d |
|- ( ph -> ( Scalar ` U ) = ( Scalar ` ( { <. ( Base ` ndx ) , ( Base ` ( ( DVecH ` K ) ` W ) ) >. , <. ( +g ` ndx ) , ( +g ` ( ( DVecH ` K ) ` W ) ) >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( .s ` ( ( DVecH ` K ) ` W ) ) >. , <. ( .i ` ndx ) , ( x e. ( Base ` ( ( DVecH ` K ) ` W ) ) , y e. ( Base ` ( ( DVecH ` K ) ` W ) ) |-> ( ( ( ( HDMap ` K ) ` W ) ` y ) ` x ) ) >. } ) ) ) |
20 |
11 19
|
eqtr4id |
|- ( ph -> R = ( Scalar ` U ) ) |