| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hlhilbase.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hlhilbase.u |  |-  U = ( ( HLHil ` K ) ` W ) | 
						
							| 3 |  | hlhilbase.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 4 |  | hlhilsca.e |  |-  E = ( ( EDRing ` K ) ` W ) | 
						
							| 5 |  | hlhilsca.g |  |-  G = ( ( HGMap ` K ) ` W ) | 
						
							| 6 |  | hlhilsca.r |  |-  R = ( E sSet <. ( *r ` ndx ) , G >. ) | 
						
							| 7 |  | ovex |  |-  ( E sSet <. ( *r ` ndx ) , G >. ) e. _V | 
						
							| 8 | 6 7 | eqeltri |  |-  R e. _V | 
						
							| 9 |  | eqid |  |-  ( { <. ( Base ` ndx ) , ( Base ` ( ( DVecH ` K ) ` W ) ) >. , <. ( +g ` ndx ) , ( +g ` ( ( DVecH ` K ) ` W ) ) >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( .s ` ( ( DVecH ` K ) ` W ) ) >. , <. ( .i ` ndx ) , ( x e. ( Base ` ( ( DVecH ` K ) ` W ) ) , y e. ( Base ` ( ( DVecH ` K ) ` W ) ) |-> ( ( ( ( HDMap ` K ) ` W ) ` y ) ` x ) ) >. } ) = ( { <. ( Base ` ndx ) , ( Base ` ( ( DVecH ` K ) ` W ) ) >. , <. ( +g ` ndx ) , ( +g ` ( ( DVecH ` K ) ` W ) ) >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( .s ` ( ( DVecH ` K ) ` W ) ) >. , <. ( .i ` ndx ) , ( x e. ( Base ` ( ( DVecH ` K ) ` W ) ) , y e. ( Base ` ( ( DVecH ` K ) ` W ) ) |-> ( ( ( ( HDMap ` K ) ` W ) ` y ) ` x ) ) >. } ) | 
						
							| 10 | 9 | phlsca |  |-  ( R e. _V -> R = ( Scalar ` ( { <. ( Base ` ndx ) , ( Base ` ( ( DVecH ` K ) ` W ) ) >. , <. ( +g ` ndx ) , ( +g ` ( ( DVecH ` K ) ` W ) ) >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( .s ` ( ( DVecH ` K ) ` W ) ) >. , <. ( .i ` ndx ) , ( x e. ( Base ` ( ( DVecH ` K ) ` W ) ) , y e. ( Base ` ( ( DVecH ` K ) ` W ) ) |-> ( ( ( ( HDMap ` K ) ` W ) ` y ) ` x ) ) >. } ) ) ) | 
						
							| 11 | 8 10 | ax-mp |  |-  R = ( Scalar ` ( { <. ( Base ` ndx ) , ( Base ` ( ( DVecH ` K ) ` W ) ) >. , <. ( +g ` ndx ) , ( +g ` ( ( DVecH ` K ) ` W ) ) >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( .s ` ( ( DVecH ` K ) ` W ) ) >. , <. ( .i ` ndx ) , ( x e. ( Base ` ( ( DVecH ` K ) ` W ) ) , y e. ( Base ` ( ( DVecH ` K ) ` W ) ) |-> ( ( ( ( HDMap ` K ) ` W ) ` y ) ` x ) ) >. } ) ) | 
						
							| 12 |  | eqid |  |-  ( ( DVecH ` K ) ` W ) = ( ( DVecH ` K ) ` W ) | 
						
							| 13 |  | eqid |  |-  ( Base ` ( ( DVecH ` K ) ` W ) ) = ( Base ` ( ( DVecH ` K ) ` W ) ) | 
						
							| 14 |  | eqid |  |-  ( +g ` ( ( DVecH ` K ) ` W ) ) = ( +g ` ( ( DVecH ` K ) ` W ) ) | 
						
							| 15 |  | eqid |  |-  ( .s ` ( ( DVecH ` K ) ` W ) ) = ( .s ` ( ( DVecH ` K ) ` W ) ) | 
						
							| 16 |  | eqid |  |-  ( ( HDMap ` K ) ` W ) = ( ( HDMap ` K ) ` W ) | 
						
							| 17 |  | eqid |  |-  ( x e. ( Base ` ( ( DVecH ` K ) ` W ) ) , y e. ( Base ` ( ( DVecH ` K ) ` W ) ) |-> ( ( ( ( HDMap ` K ) ` W ) ` y ) ` x ) ) = ( x e. ( Base ` ( ( DVecH ` K ) ` W ) ) , y e. ( Base ` ( ( DVecH ` K ) ` W ) ) |-> ( ( ( ( HDMap ` K ) ` W ) ` y ) ` x ) ) | 
						
							| 18 | 1 2 12 13 14 4 5 6 15 16 17 3 | hlhilset |  |-  ( ph -> U = ( { <. ( Base ` ndx ) , ( Base ` ( ( DVecH ` K ) ` W ) ) >. , <. ( +g ` ndx ) , ( +g ` ( ( DVecH ` K ) ` W ) ) >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( .s ` ( ( DVecH ` K ) ` W ) ) >. , <. ( .i ` ndx ) , ( x e. ( Base ` ( ( DVecH ` K ) ` W ) ) , y e. ( Base ` ( ( DVecH ` K ) ` W ) ) |-> ( ( ( ( HDMap ` K ) ` W ) ` y ) ` x ) ) >. } ) ) | 
						
							| 19 | 18 | fveq2d |  |-  ( ph -> ( Scalar ` U ) = ( Scalar ` ( { <. ( Base ` ndx ) , ( Base ` ( ( DVecH ` K ) ` W ) ) >. , <. ( +g ` ndx ) , ( +g ` ( ( DVecH ` K ) ` W ) ) >. , <. ( Scalar ` ndx ) , R >. } u. { <. ( .s ` ndx ) , ( .s ` ( ( DVecH ` K ) ` W ) ) >. , <. ( .i ` ndx ) , ( x e. ( Base ` ( ( DVecH ` K ) ` W ) ) , y e. ( Base ` ( ( DVecH ` K ) ` W ) ) |-> ( ( ( ( HDMap ` K ) ` W ) ` y ) ` x ) ) >. } ) ) ) | 
						
							| 20 | 11 19 | eqtr4id |  |-  ( ph -> R = ( Scalar ` U ) ) |