| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hlhilbase.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hlhilbase.u | ⊢ 𝑈  =  ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hlhilbase.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 4 |  | hlhilsca.e | ⊢ 𝐸  =  ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | hlhilsca.g | ⊢ 𝐺  =  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | hlhilsca.r | ⊢ 𝑅  =  ( 𝐸  sSet  〈 ( *𝑟 ‘ ndx ) ,  𝐺 〉 ) | 
						
							| 7 |  | ovex | ⊢ ( 𝐸  sSet  〈 ( *𝑟 ‘ ndx ) ,  𝐺 〉 )  ∈  V | 
						
							| 8 | 6 7 | eqeltri | ⊢ 𝑅  ∈  V | 
						
							| 9 |  | eqid | ⊢ ( { 〈 ( Base ‘ ndx ) ,  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  𝑅 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  (  ·𝑠  ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ,  𝑦  ∈  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )  ↦  ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } )  =  ( { 〈 ( Base ‘ ndx ) ,  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  𝑅 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  (  ·𝑠  ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ,  𝑦  ∈  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )  ↦  ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } ) | 
						
							| 10 | 9 | phlsca | ⊢ ( 𝑅  ∈  V  →  𝑅  =  ( Scalar ‘ ( { 〈 ( Base ‘ ndx ) ,  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  𝑅 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  (  ·𝑠  ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ,  𝑦  ∈  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )  ↦  ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } ) ) ) | 
						
							| 11 | 8 10 | ax-mp | ⊢ 𝑅  =  ( Scalar ‘ ( { 〈 ( Base ‘ ndx ) ,  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  𝑅 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  (  ·𝑠  ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ,  𝑦  ∈  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )  ↦  ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } ) ) | 
						
							| 12 |  | eqid | ⊢ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 13 |  | eqid | ⊢ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 14 |  | eqid | ⊢ ( +g ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( +g ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 15 |  | eqid | ⊢ (  ·𝑠  ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )  =  (  ·𝑠  ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 16 |  | eqid | ⊢ ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 17 |  | eqid | ⊢ ( 𝑥  ∈  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ,  𝑦  ∈  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )  ↦  ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) )  =  ( 𝑥  ∈  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ,  𝑦  ∈  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )  ↦  ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) ) | 
						
							| 18 | 1 2 12 13 14 4 5 6 15 16 17 3 | hlhilset | ⊢ ( 𝜑  →  𝑈  =  ( { 〈 ( Base ‘ ndx ) ,  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  𝑅 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  (  ·𝑠  ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ,  𝑦  ∈  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )  ↦  ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } ) ) | 
						
							| 19 | 18 | fveq2d | ⊢ ( 𝜑  →  ( Scalar ‘ 𝑈 )  =  ( Scalar ‘ ( { 〈 ( Base ‘ ndx ) ,  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  𝑅 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  (  ·𝑠  ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ,  𝑦  ∈  ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) )  ↦  ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } ) ) ) | 
						
							| 20 | 11 19 | eqtr4id | ⊢ ( 𝜑  →  𝑅  =  ( Scalar ‘ 𝑈 ) ) |