| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hlhilset.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
hlhilset.l |
⊢ 𝐿 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
hlhilset.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
hlhilset.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 5 |
|
hlhilset.p |
⊢ + = ( +g ‘ 𝑈 ) |
| 6 |
|
hlhilset.e |
⊢ 𝐸 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
|
hlhilset.g |
⊢ 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
hlhilset.r |
⊢ 𝑅 = ( 𝐸 sSet 〈 ( *𝑟 ‘ ndx ) , 𝐺 〉 ) |
| 9 |
|
hlhilset.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
| 10 |
|
hlhilset.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
| 11 |
|
hlhilset.i |
⊢ , = ( 𝑥 ∈ 𝑉 , 𝑦 ∈ 𝑉 ↦ ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑥 ) ) |
| 12 |
|
hlhilset.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 13 |
|
elex |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ V ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐾 ∈ V ) |
| 15 |
12 14
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ V ) |
| 16 |
1
|
fvexi |
⊢ 𝐻 ∈ V |
| 17 |
16
|
mptex |
⊢ ( 𝑤 ∈ 𝐻 ↦ ⦋ 𝐾 / 𝑘 ⦌ ⦋ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ⦌ ⦋ ( Base ‘ 𝑢 ) / 𝑣 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑢 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( ·𝑠 ‘ 𝑢 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ 𝑣 , 𝑦 ∈ 𝑣 ↦ ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } ) ) ∈ V |
| 18 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐾 |
| 19 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐻 |
| 20 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝐾 / 𝑘 ⦌ ⦋ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ⦌ ⦋ ( Base ‘ 𝑢 ) / 𝑣 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑢 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( ·𝑠 ‘ 𝑢 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ 𝑣 , 𝑦 ∈ 𝑣 ↦ ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } ) |
| 21 |
19 20
|
nfmpt |
⊢ Ⅎ 𝑘 ( 𝑤 ∈ 𝐻 ↦ ⦋ 𝐾 / 𝑘 ⦌ ⦋ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ⦌ ⦋ ( Base ‘ 𝑢 ) / 𝑣 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑢 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( ·𝑠 ‘ 𝑢 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ 𝑣 , 𝑦 ∈ 𝑣 ↦ ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } ) ) |
| 22 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( LHyp ‘ 𝑘 ) = ( LHyp ‘ 𝐾 ) ) |
| 23 |
22 1
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( LHyp ‘ 𝑘 ) = 𝐻 ) |
| 24 |
|
csbeq1a |
⊢ ( 𝑘 = 𝐾 → ⦋ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ⦌ ⦋ ( Base ‘ 𝑢 ) / 𝑣 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑢 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( ·𝑠 ‘ 𝑢 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ 𝑣 , 𝑦 ∈ 𝑣 ↦ ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } ) = ⦋ 𝐾 / 𝑘 ⦌ ⦋ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ⦌ ⦋ ( Base ‘ 𝑢 ) / 𝑣 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑢 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( ·𝑠 ‘ 𝑢 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ 𝑣 , 𝑦 ∈ 𝑣 ↦ ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } ) ) |
| 25 |
23 24
|
mpteq12dv |
⊢ ( 𝑘 = 𝐾 → ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ⦋ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ⦌ ⦋ ( Base ‘ 𝑢 ) / 𝑣 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑢 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( ·𝑠 ‘ 𝑢 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ 𝑣 , 𝑦 ∈ 𝑣 ↦ ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } ) ) = ( 𝑤 ∈ 𝐻 ↦ ⦋ 𝐾 / 𝑘 ⦌ ⦋ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ⦌ ⦋ ( Base ‘ 𝑢 ) / 𝑣 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑢 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( ·𝑠 ‘ 𝑢 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ 𝑣 , 𝑦 ∈ 𝑣 ↦ ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } ) ) ) |
| 26 |
|
df-hlhil |
⊢ HLHil = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ⦋ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ⦌ ⦋ ( Base ‘ 𝑢 ) / 𝑣 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑢 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( ·𝑠 ‘ 𝑢 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ 𝑣 , 𝑦 ∈ 𝑣 ↦ ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } ) ) ) |
| 27 |
18 21 25 26
|
fvmptf |
⊢ ( ( 𝐾 ∈ V ∧ ( 𝑤 ∈ 𝐻 ↦ ⦋ 𝐾 / 𝑘 ⦌ ⦋ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ⦌ ⦋ ( Base ‘ 𝑢 ) / 𝑣 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑢 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( ·𝑠 ‘ 𝑢 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ 𝑣 , 𝑦 ∈ 𝑣 ↦ ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } ) ) ∈ V ) → ( HLHil ‘ 𝐾 ) = ( 𝑤 ∈ 𝐻 ↦ ⦋ 𝐾 / 𝑘 ⦌ ⦋ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ⦌ ⦋ ( Base ‘ 𝑢 ) / 𝑣 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑢 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( ·𝑠 ‘ 𝑢 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ 𝑣 , 𝑦 ∈ 𝑣 ↦ ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } ) ) ) |
| 28 |
15 17 27
|
sylancl |
⊢ ( 𝜑 → ( HLHil ‘ 𝐾 ) = ( 𝑤 ∈ 𝐻 ↦ ⦋ 𝐾 / 𝑘 ⦌ ⦋ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ⦌ ⦋ ( Base ‘ 𝑢 ) / 𝑣 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑢 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( ·𝑠 ‘ 𝑢 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ 𝑣 , 𝑦 ∈ 𝑣 ↦ ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } ) ) ) |
| 29 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 = 𝑊 ) → 𝐾 ∈ V ) |
| 30 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ∈ V ) |
| 31 |
|
fvexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑢 = ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) → ( Base ‘ 𝑢 ) ∈ V ) |
| 32 |
|
id |
⊢ ( 𝑣 = ( Base ‘ 𝑢 ) → 𝑣 = ( Base ‘ 𝑢 ) ) |
| 33 |
|
id |
⊢ ( 𝑢 = ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) → 𝑢 = ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) |
| 34 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → 𝑘 = 𝐾 ) |
| 35 |
34
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( DVecH ‘ 𝑘 ) = ( DVecH ‘ 𝐾 ) ) |
| 36 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → 𝑤 = 𝑊 ) |
| 37 |
35 36
|
fveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 38 |
37 3
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) = 𝑈 ) |
| 39 |
33 38
|
sylan9eqr |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑢 = ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) → 𝑢 = 𝑈 ) |
| 40 |
39
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑢 = ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) → ( Base ‘ 𝑢 ) = ( Base ‘ 𝑈 ) ) |
| 41 |
40 4
|
eqtr4di |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑢 = ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) → ( Base ‘ 𝑢 ) = 𝑉 ) |
| 42 |
32 41
|
sylan9eqr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑢 = ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ∧ 𝑣 = ( Base ‘ 𝑢 ) ) → 𝑣 = 𝑉 ) |
| 43 |
42
|
opeq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑢 = ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ∧ 𝑣 = ( Base ‘ 𝑢 ) ) → 〈 ( Base ‘ ndx ) , 𝑣 〉 = 〈 ( Base ‘ ndx ) , 𝑉 〉 ) |
| 44 |
39
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑢 = ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ∧ 𝑣 = ( Base ‘ 𝑢 ) ) → 𝑢 = 𝑈 ) |
| 45 |
44
|
fveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑢 = ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ∧ 𝑣 = ( Base ‘ 𝑢 ) ) → ( +g ‘ 𝑢 ) = ( +g ‘ 𝑈 ) ) |
| 46 |
45 5
|
eqtr4di |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑢 = ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ∧ 𝑣 = ( Base ‘ 𝑢 ) ) → ( +g ‘ 𝑢 ) = + ) |
| 47 |
46
|
opeq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑢 = ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ∧ 𝑣 = ( Base ‘ 𝑢 ) ) → 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑢 ) 〉 = 〈 ( +g ‘ ndx ) , + 〉 ) |
| 48 |
34
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( EDRing ‘ 𝑘 ) = ( EDRing ‘ 𝐾 ) ) |
| 49 |
48 36
|
fveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 50 |
49 6
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) = 𝐸 ) |
| 51 |
34
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( HGMap ‘ 𝑘 ) = ( HGMap ‘ 𝐾 ) ) |
| 52 |
51 36
|
fveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 53 |
52 7
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) = 𝐺 ) |
| 54 |
53
|
opeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 = 〈 ( *𝑟 ‘ ndx ) , 𝐺 〉 ) |
| 55 |
50 54
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) = ( 𝐸 sSet 〈 ( *𝑟 ‘ ndx ) , 𝐺 〉 ) ) |
| 56 |
55 8
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) = 𝑅 ) |
| 57 |
56
|
opeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → 〈 ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) 〉 = 〈 ( Scalar ‘ ndx ) , 𝑅 〉 ) |
| 58 |
57
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑢 = ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ∧ 𝑣 = ( Base ‘ 𝑢 ) ) → 〈 ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) 〉 = 〈 ( Scalar ‘ ndx ) , 𝑅 〉 ) |
| 59 |
43 47 58
|
tpeq123d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑢 = ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ∧ 𝑣 = ( Base ‘ 𝑢 ) ) → { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑢 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) 〉 } = { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( Scalar ‘ ndx ) , 𝑅 〉 } ) |
| 60 |
44
|
fveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑢 = ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ∧ 𝑣 = ( Base ‘ 𝑢 ) ) → ( ·𝑠 ‘ 𝑢 ) = ( ·𝑠 ‘ 𝑈 ) ) |
| 61 |
60 9
|
eqtr4di |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑢 = ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ∧ 𝑣 = ( Base ‘ 𝑢 ) ) → ( ·𝑠 ‘ 𝑢 ) = · ) |
| 62 |
61
|
opeq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑢 = ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ∧ 𝑣 = ( Base ‘ 𝑢 ) ) → 〈 ( ·𝑠 ‘ ndx ) , ( ·𝑠 ‘ 𝑢 ) 〉 = 〈 ( ·𝑠 ‘ ndx ) , · 〉 ) |
| 63 |
34
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( HDMap ‘ 𝑘 ) = ( HDMap ‘ 𝐾 ) ) |
| 64 |
63 36
|
fveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 65 |
64 10
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) = 𝑆 ) |
| 66 |
65
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑢 = ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ∧ 𝑣 = ( Base ‘ 𝑢 ) ) → ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) = 𝑆 ) |
| 67 |
66
|
fveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑢 = ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ∧ 𝑣 = ( Base ‘ 𝑢 ) ) → ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) = ( 𝑆 ‘ 𝑦 ) ) |
| 68 |
67
|
fveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑢 = ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ∧ 𝑣 = ( Base ‘ 𝑢 ) ) → ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) = ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑥 ) ) |
| 69 |
42 42 68
|
mpoeq123dv |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑢 = ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ∧ 𝑣 = ( Base ‘ 𝑢 ) ) → ( 𝑥 ∈ 𝑣 , 𝑦 ∈ 𝑣 ↦ ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑉 , 𝑦 ∈ 𝑉 ↦ ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑥 ) ) ) |
| 70 |
69 11
|
eqtr4di |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑢 = ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ∧ 𝑣 = ( Base ‘ 𝑢 ) ) → ( 𝑥 ∈ 𝑣 , 𝑦 ∈ 𝑣 ↦ ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) = , ) |
| 71 |
70
|
opeq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑢 = ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ∧ 𝑣 = ( Base ‘ 𝑢 ) ) → 〈 ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ 𝑣 , 𝑦 ∈ 𝑣 ↦ ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 = 〈 ( ·𝑖 ‘ ndx ) , , 〉 ) |
| 72 |
62 71
|
preq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑢 = ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ∧ 𝑣 = ( Base ‘ 𝑢 ) ) → { 〈 ( ·𝑠 ‘ ndx ) , ( ·𝑠 ‘ 𝑢 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ 𝑣 , 𝑦 ∈ 𝑣 ↦ ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } = { 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , , 〉 } ) |
| 73 |
59 72
|
uneq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑢 = ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) ∧ 𝑣 = ( Base ‘ 𝑢 ) ) → ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑢 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( ·𝑠 ‘ 𝑢 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ 𝑣 , 𝑦 ∈ 𝑣 ↦ ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } ) = ( { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( Scalar ‘ ndx ) , 𝑅 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , , 〉 } ) ) |
| 74 |
31 73
|
csbied |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) ∧ 𝑢 = ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) → ⦋ ( Base ‘ 𝑢 ) / 𝑣 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑢 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( ·𝑠 ‘ 𝑢 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ 𝑣 , 𝑦 ∈ 𝑣 ↦ ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } ) = ( { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( Scalar ‘ ndx ) , 𝑅 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , , 〉 } ) ) |
| 75 |
30 74
|
csbied |
⊢ ( ( ( 𝜑 ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ⦋ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ⦌ ⦋ ( Base ‘ 𝑢 ) / 𝑣 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑢 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( ·𝑠 ‘ 𝑢 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ 𝑣 , 𝑦 ∈ 𝑣 ↦ ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } ) = ( { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( Scalar ‘ ndx ) , 𝑅 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , , 〉 } ) ) |
| 76 |
29 75
|
csbied |
⊢ ( ( 𝜑 ∧ 𝑤 = 𝑊 ) → ⦋ 𝐾 / 𝑘 ⦌ ⦋ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ⦌ ⦋ ( Base ‘ 𝑢 ) / 𝑣 ⦌ ( { 〈 ( Base ‘ ndx ) , 𝑣 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑢 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( ·𝑠 ‘ 𝑢 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ 𝑣 , 𝑦 ∈ 𝑣 ↦ ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } ) = ( { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( Scalar ‘ ndx ) , 𝑅 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , , 〉 } ) ) |
| 77 |
12
|
simprd |
⊢ ( 𝜑 → 𝑊 ∈ 𝐻 ) |
| 78 |
|
tpex |
⊢ { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( Scalar ‘ ndx ) , 𝑅 〉 } ∈ V |
| 79 |
|
prex |
⊢ { 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , , 〉 } ∈ V |
| 80 |
78 79
|
unex |
⊢ ( { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( Scalar ‘ ndx ) , 𝑅 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , , 〉 } ) ∈ V |
| 81 |
80
|
a1i |
⊢ ( 𝜑 → ( { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( Scalar ‘ ndx ) , 𝑅 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , , 〉 } ) ∈ V ) |
| 82 |
28 76 77 81
|
fvmptd |
⊢ ( 𝜑 → ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 ) = ( { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( Scalar ‘ ndx ) , 𝑅 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , , 〉 } ) ) |
| 83 |
2 82
|
eqtrid |
⊢ ( 𝜑 → 𝐿 = ( { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 ( +g ‘ ndx ) , + 〉 , 〈 ( Scalar ‘ ndx ) , 𝑅 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , , 〉 } ) ) |