| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hlhilset.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hlhilset.l | ⊢ 𝐿  =  ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hlhilset.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | hlhilset.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 5 |  | hlhilset.p | ⊢  +   =  ( +g ‘ 𝑈 ) | 
						
							| 6 |  | hlhilset.e | ⊢ 𝐸  =  ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | hlhilset.g | ⊢ 𝐺  =  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | hlhilset.r | ⊢ 𝑅  =  ( 𝐸  sSet  〈 ( *𝑟 ‘ ndx ) ,  𝐺 〉 ) | 
						
							| 9 |  | hlhilset.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 10 |  | hlhilset.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 11 |  | hlhilset.i | ⊢  ,   =  ( 𝑥  ∈  𝑉 ,  𝑦  ∈  𝑉  ↦  ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑥 ) ) | 
						
							| 12 |  | hlhilset.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 13 |  | elex | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  V ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  𝐾  ∈  V ) | 
						
							| 15 | 12 14 | syl | ⊢ ( 𝜑  →  𝐾  ∈  V ) | 
						
							| 16 | 1 | fvexi | ⊢ 𝐻  ∈  V | 
						
							| 17 | 16 | mptex | ⊢ ( 𝑤  ∈  𝐻  ↦  ⦋ 𝐾  /  𝑘 ⦌ ⦋ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )  /  𝑢 ⦌ ⦋ ( Base ‘ 𝑢 )  /  𝑣 ⦌ ( { 〈 ( Base ‘ ndx ) ,  𝑣 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ 𝑢 ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 )  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  (  ·𝑠  ‘ 𝑢 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑥  ∈  𝑣 ,  𝑦  ∈  𝑣  ↦  ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } ) )  ∈  V | 
						
							| 18 |  | nfcv | ⊢ Ⅎ 𝑘 𝐾 | 
						
							| 19 |  | nfcv | ⊢ Ⅎ 𝑘 𝐻 | 
						
							| 20 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝐾  /  𝑘 ⦌ ⦋ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )  /  𝑢 ⦌ ⦋ ( Base ‘ 𝑢 )  /  𝑣 ⦌ ( { 〈 ( Base ‘ ndx ) ,  𝑣 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ 𝑢 ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 )  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  (  ·𝑠  ‘ 𝑢 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑥  ∈  𝑣 ,  𝑦  ∈  𝑣  ↦  ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } ) | 
						
							| 21 | 19 20 | nfmpt | ⊢ Ⅎ 𝑘 ( 𝑤  ∈  𝐻  ↦  ⦋ 𝐾  /  𝑘 ⦌ ⦋ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )  /  𝑢 ⦌ ⦋ ( Base ‘ 𝑢 )  /  𝑣 ⦌ ( { 〈 ( Base ‘ ndx ) ,  𝑣 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ 𝑢 ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 )  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  (  ·𝑠  ‘ 𝑢 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑥  ∈  𝑣 ,  𝑦  ∈  𝑣  ↦  ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } ) ) | 
						
							| 22 |  | fveq2 | ⊢ ( 𝑘  =  𝐾  →  ( LHyp ‘ 𝑘 )  =  ( LHyp ‘ 𝐾 ) ) | 
						
							| 23 | 22 1 | eqtr4di | ⊢ ( 𝑘  =  𝐾  →  ( LHyp ‘ 𝑘 )  =  𝐻 ) | 
						
							| 24 |  | csbeq1a | ⊢ ( 𝑘  =  𝐾  →  ⦋ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )  /  𝑢 ⦌ ⦋ ( Base ‘ 𝑢 )  /  𝑣 ⦌ ( { 〈 ( Base ‘ ndx ) ,  𝑣 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ 𝑢 ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 )  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  (  ·𝑠  ‘ 𝑢 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑥  ∈  𝑣 ,  𝑦  ∈  𝑣  ↦  ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } )  =  ⦋ 𝐾  /  𝑘 ⦌ ⦋ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )  /  𝑢 ⦌ ⦋ ( Base ‘ 𝑢 )  /  𝑣 ⦌ ( { 〈 ( Base ‘ ndx ) ,  𝑣 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ 𝑢 ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 )  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  (  ·𝑠  ‘ 𝑢 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑥  ∈  𝑣 ,  𝑦  ∈  𝑣  ↦  ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } ) ) | 
						
							| 25 | 23 24 | mpteq12dv | ⊢ ( 𝑘  =  𝐾  →  ( 𝑤  ∈  ( LHyp ‘ 𝑘 )  ↦  ⦋ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )  /  𝑢 ⦌ ⦋ ( Base ‘ 𝑢 )  /  𝑣 ⦌ ( { 〈 ( Base ‘ ndx ) ,  𝑣 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ 𝑢 ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 )  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  (  ·𝑠  ‘ 𝑢 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑥  ∈  𝑣 ,  𝑦  ∈  𝑣  ↦  ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } ) )  =  ( 𝑤  ∈  𝐻  ↦  ⦋ 𝐾  /  𝑘 ⦌ ⦋ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )  /  𝑢 ⦌ ⦋ ( Base ‘ 𝑢 )  /  𝑣 ⦌ ( { 〈 ( Base ‘ ndx ) ,  𝑣 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ 𝑢 ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 )  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  (  ·𝑠  ‘ 𝑢 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑥  ∈  𝑣 ,  𝑦  ∈  𝑣  ↦  ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } ) ) ) | 
						
							| 26 |  | df-hlhil | ⊢ HLHil  =  ( 𝑘  ∈  V  ↦  ( 𝑤  ∈  ( LHyp ‘ 𝑘 )  ↦  ⦋ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )  /  𝑢 ⦌ ⦋ ( Base ‘ 𝑢 )  /  𝑣 ⦌ ( { 〈 ( Base ‘ ndx ) ,  𝑣 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ 𝑢 ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 )  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  (  ·𝑠  ‘ 𝑢 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑥  ∈  𝑣 ,  𝑦  ∈  𝑣  ↦  ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } ) ) ) | 
						
							| 27 | 18 21 25 26 | fvmptf | ⊢ ( ( 𝐾  ∈  V  ∧  ( 𝑤  ∈  𝐻  ↦  ⦋ 𝐾  /  𝑘 ⦌ ⦋ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )  /  𝑢 ⦌ ⦋ ( Base ‘ 𝑢 )  /  𝑣 ⦌ ( { 〈 ( Base ‘ ndx ) ,  𝑣 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ 𝑢 ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 )  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  (  ·𝑠  ‘ 𝑢 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑥  ∈  𝑣 ,  𝑦  ∈  𝑣  ↦  ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } ) )  ∈  V )  →  ( HLHil ‘ 𝐾 )  =  ( 𝑤  ∈  𝐻  ↦  ⦋ 𝐾  /  𝑘 ⦌ ⦋ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )  /  𝑢 ⦌ ⦋ ( Base ‘ 𝑢 )  /  𝑣 ⦌ ( { 〈 ( Base ‘ ndx ) ,  𝑣 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ 𝑢 ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 )  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  (  ·𝑠  ‘ 𝑢 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑥  ∈  𝑣 ,  𝑦  ∈  𝑣  ↦  ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } ) ) ) | 
						
							| 28 | 15 17 27 | sylancl | ⊢ ( 𝜑  →  ( HLHil ‘ 𝐾 )  =  ( 𝑤  ∈  𝐻  ↦  ⦋ 𝐾  /  𝑘 ⦌ ⦋ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )  /  𝑢 ⦌ ⦋ ( Base ‘ 𝑢 )  /  𝑣 ⦌ ( { 〈 ( Base ‘ ndx ) ,  𝑣 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ 𝑢 ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 )  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  (  ·𝑠  ‘ 𝑢 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑥  ∈  𝑣 ,  𝑦  ∈  𝑣  ↦  ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } ) ) ) | 
						
							| 29 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  =  𝑊 )  →  𝐾  ∈  V ) | 
						
							| 30 |  | fvexd | ⊢ ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  →  ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )  ∈  V ) | 
						
							| 31 |  | fvexd | ⊢ ( ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  ∧  𝑢  =  ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) )  →  ( Base ‘ 𝑢 )  ∈  V ) | 
						
							| 32 |  | id | ⊢ ( 𝑣  =  ( Base ‘ 𝑢 )  →  𝑣  =  ( Base ‘ 𝑢 ) ) | 
						
							| 33 |  | id | ⊢ ( 𝑢  =  ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )  →  𝑢  =  ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) ) | 
						
							| 34 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  →  𝑘  =  𝐾 ) | 
						
							| 35 | 34 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  →  ( DVecH ‘ 𝑘 )  =  ( DVecH ‘ 𝐾 ) ) | 
						
							| 36 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  →  𝑤  =  𝑊 ) | 
						
							| 37 | 35 36 | fveq12d | ⊢ ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  →  ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 38 | 37 3 | eqtr4di | ⊢ ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  →  ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )  =  𝑈 ) | 
						
							| 39 | 33 38 | sylan9eqr | ⊢ ( ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  ∧  𝑢  =  ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) )  →  𝑢  =  𝑈 ) | 
						
							| 40 | 39 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  ∧  𝑢  =  ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) )  →  ( Base ‘ 𝑢 )  =  ( Base ‘ 𝑈 ) ) | 
						
							| 41 | 40 4 | eqtr4di | ⊢ ( ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  ∧  𝑢  =  ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) )  →  ( Base ‘ 𝑢 )  =  𝑉 ) | 
						
							| 42 | 32 41 | sylan9eqr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  ∧  𝑢  =  ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) )  ∧  𝑣  =  ( Base ‘ 𝑢 ) )  →  𝑣  =  𝑉 ) | 
						
							| 43 | 42 | opeq2d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  ∧  𝑢  =  ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) )  ∧  𝑣  =  ( Base ‘ 𝑢 ) )  →  〈 ( Base ‘ ndx ) ,  𝑣 〉  =  〈 ( Base ‘ ndx ) ,  𝑉 〉 ) | 
						
							| 44 | 39 | adantr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  ∧  𝑢  =  ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) )  ∧  𝑣  =  ( Base ‘ 𝑢 ) )  →  𝑢  =  𝑈 ) | 
						
							| 45 | 44 | fveq2d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  ∧  𝑢  =  ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) )  ∧  𝑣  =  ( Base ‘ 𝑢 ) )  →  ( +g ‘ 𝑢 )  =  ( +g ‘ 𝑈 ) ) | 
						
							| 46 | 45 5 | eqtr4di | ⊢ ( ( ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  ∧  𝑢  =  ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) )  ∧  𝑣  =  ( Base ‘ 𝑢 ) )  →  ( +g ‘ 𝑢 )  =   +  ) | 
						
							| 47 | 46 | opeq2d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  ∧  𝑢  =  ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) )  ∧  𝑣  =  ( Base ‘ 𝑢 ) )  →  〈 ( +g ‘ ndx ) ,  ( +g ‘ 𝑢 ) 〉  =  〈 ( +g ‘ ndx ) ,   +  〉 ) | 
						
							| 48 | 34 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  →  ( EDRing ‘ 𝑘 )  =  ( EDRing ‘ 𝐾 ) ) | 
						
							| 49 | 48 36 | fveq12d | ⊢ ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  →  ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 )  =  ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 50 | 49 6 | eqtr4di | ⊢ ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  →  ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 )  =  𝐸 ) | 
						
							| 51 | 34 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  →  ( HGMap ‘ 𝑘 )  =  ( HGMap ‘ 𝐾 ) ) | 
						
							| 52 | 51 36 | fveq12d | ⊢ ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  →  ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 )  =  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 53 | 52 7 | eqtr4di | ⊢ ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  →  ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 )  =  𝐺 ) | 
						
							| 54 | 53 | opeq2d | ⊢ ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  →  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉  =  〈 ( *𝑟 ‘ ndx ) ,  𝐺 〉 ) | 
						
							| 55 | 50 54 | oveq12d | ⊢ ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  →  ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 )  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 )  =  ( 𝐸  sSet  〈 ( *𝑟 ‘ ndx ) ,  𝐺 〉 ) ) | 
						
							| 56 | 55 8 | eqtr4di | ⊢ ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  →  ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 )  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 )  =  𝑅 ) | 
						
							| 57 | 56 | opeq2d | ⊢ ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  →  〈 ( Scalar ‘ ndx ) ,  ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 )  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) 〉  =  〈 ( Scalar ‘ ndx ) ,  𝑅 〉 ) | 
						
							| 58 | 57 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  ∧  𝑢  =  ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) )  ∧  𝑣  =  ( Base ‘ 𝑢 ) )  →  〈 ( Scalar ‘ ndx ) ,  ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 )  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) 〉  =  〈 ( Scalar ‘ ndx ) ,  𝑅 〉 ) | 
						
							| 59 | 43 47 58 | tpeq123d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  ∧  𝑢  =  ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) )  ∧  𝑣  =  ( Base ‘ 𝑢 ) )  →  { 〈 ( Base ‘ ndx ) ,  𝑣 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ 𝑢 ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 )  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) 〉 }  =  { 〈 ( Base ‘ ndx ) ,  𝑉 〉 ,  〈 ( +g ‘ ndx ) ,   +  〉 ,  〈 ( Scalar ‘ ndx ) ,  𝑅 〉 } ) | 
						
							| 60 | 44 | fveq2d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  ∧  𝑢  =  ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) )  ∧  𝑣  =  ( Base ‘ 𝑢 ) )  →  (  ·𝑠  ‘ 𝑢 )  =  (  ·𝑠  ‘ 𝑈 ) ) | 
						
							| 61 | 60 9 | eqtr4di | ⊢ ( ( ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  ∧  𝑢  =  ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) )  ∧  𝑣  =  ( Base ‘ 𝑢 ) )  →  (  ·𝑠  ‘ 𝑢 )  =   ·  ) | 
						
							| 62 | 61 | opeq2d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  ∧  𝑢  =  ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) )  ∧  𝑣  =  ( Base ‘ 𝑢 ) )  →  〈 (  ·𝑠  ‘ ndx ) ,  (  ·𝑠  ‘ 𝑢 ) 〉  =  〈 (  ·𝑠  ‘ ndx ) ,   ·  〉 ) | 
						
							| 63 | 34 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  →  ( HDMap ‘ 𝑘 )  =  ( HDMap ‘ 𝐾 ) ) | 
						
							| 64 | 63 36 | fveq12d | ⊢ ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  →  ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 )  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 65 | 64 10 | eqtr4di | ⊢ ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  →  ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 )  =  𝑆 ) | 
						
							| 66 | 65 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  ∧  𝑢  =  ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) )  ∧  𝑣  =  ( Base ‘ 𝑢 ) )  →  ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 )  =  𝑆 ) | 
						
							| 67 | 66 | fveq1d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  ∧  𝑢  =  ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) )  ∧  𝑣  =  ( Base ‘ 𝑢 ) )  →  ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 )  =  ( 𝑆 ‘ 𝑦 ) ) | 
						
							| 68 | 67 | fveq1d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  ∧  𝑢  =  ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) )  ∧  𝑣  =  ( Base ‘ 𝑢 ) )  →  ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 )  =  ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑥 ) ) | 
						
							| 69 | 42 42 68 | mpoeq123dv | ⊢ ( ( ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  ∧  𝑢  =  ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) )  ∧  𝑣  =  ( Base ‘ 𝑢 ) )  →  ( 𝑥  ∈  𝑣 ,  𝑦  ∈  𝑣  ↦  ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) )  =  ( 𝑥  ∈  𝑉 ,  𝑦  ∈  𝑉  ↦  ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑥 ) ) ) | 
						
							| 70 | 69 11 | eqtr4di | ⊢ ( ( ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  ∧  𝑢  =  ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) )  ∧  𝑣  =  ( Base ‘ 𝑢 ) )  →  ( 𝑥  ∈  𝑣 ,  𝑦  ∈  𝑣  ↦  ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) )  =   ,  ) | 
						
							| 71 | 70 | opeq2d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  ∧  𝑢  =  ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) )  ∧  𝑣  =  ( Base ‘ 𝑢 ) )  →  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑥  ∈  𝑣 ,  𝑦  ∈  𝑣  ↦  ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉  =  〈 ( ·𝑖 ‘ ndx ) ,   ,  〉 ) | 
						
							| 72 | 62 71 | preq12d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  ∧  𝑢  =  ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) )  ∧  𝑣  =  ( Base ‘ 𝑢 ) )  →  { 〈 (  ·𝑠  ‘ ndx ) ,  (  ·𝑠  ‘ 𝑢 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑥  ∈  𝑣 ,  𝑦  ∈  𝑣  ↦  ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 }  =  { 〈 (  ·𝑠  ‘ ndx ) ,   ·  〉 ,  〈 ( ·𝑖 ‘ ndx ) ,   ,  〉 } ) | 
						
							| 73 | 59 72 | uneq12d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  ∧  𝑢  =  ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) )  ∧  𝑣  =  ( Base ‘ 𝑢 ) )  →  ( { 〈 ( Base ‘ ndx ) ,  𝑣 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ 𝑢 ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 )  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  (  ·𝑠  ‘ 𝑢 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑥  ∈  𝑣 ,  𝑦  ∈  𝑣  ↦  ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } )  =  ( { 〈 ( Base ‘ ndx ) ,  𝑉 〉 ,  〈 ( +g ‘ ndx ) ,   +  〉 ,  〈 ( Scalar ‘ ndx ) ,  𝑅 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,   ·  〉 ,  〈 ( ·𝑖 ‘ ndx ) ,   ,  〉 } ) ) | 
						
							| 74 | 31 73 | csbied | ⊢ ( ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  ∧  𝑢  =  ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) )  →  ⦋ ( Base ‘ 𝑢 )  /  𝑣 ⦌ ( { 〈 ( Base ‘ ndx ) ,  𝑣 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ 𝑢 ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 )  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  (  ·𝑠  ‘ 𝑢 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑥  ∈  𝑣 ,  𝑦  ∈  𝑣  ↦  ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } )  =  ( { 〈 ( Base ‘ ndx ) ,  𝑉 〉 ,  〈 ( +g ‘ ndx ) ,   +  〉 ,  〈 ( Scalar ‘ ndx ) ,  𝑅 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,   ·  〉 ,  〈 ( ·𝑖 ‘ ndx ) ,   ,  〉 } ) ) | 
						
							| 75 | 30 74 | csbied | ⊢ ( ( ( 𝜑  ∧  𝑤  =  𝑊 )  ∧  𝑘  =  𝐾 )  →  ⦋ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )  /  𝑢 ⦌ ⦋ ( Base ‘ 𝑢 )  /  𝑣 ⦌ ( { 〈 ( Base ‘ ndx ) ,  𝑣 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ 𝑢 ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 )  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  (  ·𝑠  ‘ 𝑢 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑥  ∈  𝑣 ,  𝑦  ∈  𝑣  ↦  ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } )  =  ( { 〈 ( Base ‘ ndx ) ,  𝑉 〉 ,  〈 ( +g ‘ ndx ) ,   +  〉 ,  〈 ( Scalar ‘ ndx ) ,  𝑅 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,   ·  〉 ,  〈 ( ·𝑖 ‘ ndx ) ,   ,  〉 } ) ) | 
						
							| 76 | 29 75 | csbied | ⊢ ( ( 𝜑  ∧  𝑤  =  𝑊 )  →  ⦋ 𝐾  /  𝑘 ⦌ ⦋ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )  /  𝑢 ⦌ ⦋ ( Base ‘ 𝑢 )  /  𝑣 ⦌ ( { 〈 ( Base ‘ ndx ) ,  𝑣 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ 𝑢 ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 )  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) 〉 ) 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  (  ·𝑠  ‘ 𝑢 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑥  ∈  𝑣 ,  𝑦  ∈  𝑣  ↦  ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } )  =  ( { 〈 ( Base ‘ ndx ) ,  𝑉 〉 ,  〈 ( +g ‘ ndx ) ,   +  〉 ,  〈 ( Scalar ‘ ndx ) ,  𝑅 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,   ·  〉 ,  〈 ( ·𝑖 ‘ ndx ) ,   ,  〉 } ) ) | 
						
							| 77 | 12 | simprd | ⊢ ( 𝜑  →  𝑊  ∈  𝐻 ) | 
						
							| 78 |  | tpex | ⊢ { 〈 ( Base ‘ ndx ) ,  𝑉 〉 ,  〈 ( +g ‘ ndx ) ,   +  〉 ,  〈 ( Scalar ‘ ndx ) ,  𝑅 〉 }  ∈  V | 
						
							| 79 |  | prex | ⊢ { 〈 (  ·𝑠  ‘ ndx ) ,   ·  〉 ,  〈 ( ·𝑖 ‘ ndx ) ,   ,  〉 }  ∈  V | 
						
							| 80 | 78 79 | unex | ⊢ ( { 〈 ( Base ‘ ndx ) ,  𝑉 〉 ,  〈 ( +g ‘ ndx ) ,   +  〉 ,  〈 ( Scalar ‘ ndx ) ,  𝑅 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,   ·  〉 ,  〈 ( ·𝑖 ‘ ndx ) ,   ,  〉 } )  ∈  V | 
						
							| 81 | 80 | a1i | ⊢ ( 𝜑  →  ( { 〈 ( Base ‘ ndx ) ,  𝑉 〉 ,  〈 ( +g ‘ ndx ) ,   +  〉 ,  〈 ( Scalar ‘ ndx ) ,  𝑅 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,   ·  〉 ,  〈 ( ·𝑖 ‘ ndx ) ,   ,  〉 } )  ∈  V ) | 
						
							| 82 | 28 76 77 81 | fvmptd | ⊢ ( 𝜑  →  ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 )  =  ( { 〈 ( Base ‘ ndx ) ,  𝑉 〉 ,  〈 ( +g ‘ ndx ) ,   +  〉 ,  〈 ( Scalar ‘ ndx ) ,  𝑅 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,   ·  〉 ,  〈 ( ·𝑖 ‘ ndx ) ,   ,  〉 } ) ) | 
						
							| 83 | 2 82 | eqtrid | ⊢ ( 𝜑  →  𝐿  =  ( { 〈 ( Base ‘ ndx ) ,  𝑉 〉 ,  〈 ( +g ‘ ndx ) ,   +  〉 ,  〈 ( Scalar ‘ ndx ) ,  𝑅 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,   ·  〉 ,  〈 ( ·𝑖 ‘ ndx ) ,   ,  〉 } ) ) |