Metamath Proof Explorer


Definition df-hlhil

Description: Define our final Hilbert space constructed from a Hilbert lattice. (Contributed by NM, 21-Jun-2015) (Revised by Mario Carneiro, 28-Jun-2015)

Ref Expression
Assertion df-hlhil HLHil = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ( Base ‘ 𝑢 ) / 𝑣 ( { ⟨ ( Base ‘ ndx ) , 𝑣 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝑢 ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) ⟩ ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( ·𝑠𝑢 ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑥𝑣 , 𝑦𝑣 ↦ ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) ⟩ } ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 chlh HLHil
1 vk 𝑘
2 cvv V
3 vw 𝑤
4 clh LHyp
5 1 cv 𝑘
6 5 4 cfv ( LHyp ‘ 𝑘 )
7 cdvh DVecH
8 5 7 cfv ( DVecH ‘ 𝑘 )
9 3 cv 𝑤
10 9 8 cfv ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 )
11 vu 𝑢
12 cbs Base
13 11 cv 𝑢
14 13 12 cfv ( Base ‘ 𝑢 )
15 vv 𝑣
16 cnx ndx
17 16 12 cfv ( Base ‘ ndx )
18 15 cv 𝑣
19 17 18 cop ⟨ ( Base ‘ ndx ) , 𝑣
20 cplusg +g
21 16 20 cfv ( +g ‘ ndx )
22 13 20 cfv ( +g𝑢 )
23 21 22 cop ⟨ ( +g ‘ ndx ) , ( +g𝑢 ) ⟩
24 csca Scalar
25 16 24 cfv ( Scalar ‘ ndx )
26 cedring EDRing
27 5 26 cfv ( EDRing ‘ 𝑘 )
28 9 27 cfv ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 )
29 csts sSet
30 cstv *𝑟
31 16 30 cfv ( *𝑟 ‘ ndx )
32 chg HGMap
33 5 32 cfv ( HGMap ‘ 𝑘 )
34 9 33 cfv ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 )
35 31 34 cop ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) ⟩
36 28 35 29 co ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) ⟩ )
37 25 36 cop ⟨ ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) ⟩ ) ⟩
38 19 23 37 ctp { ⟨ ( Base ‘ ndx ) , 𝑣 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝑢 ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) ⟩ ) ⟩ }
39 cvsca ·𝑠
40 16 39 cfv ( ·𝑠 ‘ ndx )
41 13 39 cfv ( ·𝑠𝑢 )
42 40 41 cop ⟨ ( ·𝑠 ‘ ndx ) , ( ·𝑠𝑢 ) ⟩
43 cip ·𝑖
44 16 43 cfv ( ·𝑖 ‘ ndx )
45 vx 𝑥
46 vy 𝑦
47 chdma HDMap
48 5 47 cfv ( HDMap ‘ 𝑘 )
49 9 48 cfv ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 )
50 46 cv 𝑦
51 50 49 cfv ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 )
52 45 cv 𝑥
53 52 51 cfv ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 )
54 45 46 18 18 53 cmpo ( 𝑥𝑣 , 𝑦𝑣 ↦ ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) )
55 44 54 cop ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑥𝑣 , 𝑦𝑣 ↦ ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) ⟩
56 42 55 cpr { ⟨ ( ·𝑠 ‘ ndx ) , ( ·𝑠𝑢 ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑥𝑣 , 𝑦𝑣 ↦ ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) ⟩ }
57 38 56 cun ( { ⟨ ( Base ‘ ndx ) , 𝑣 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝑢 ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) ⟩ ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( ·𝑠𝑢 ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑥𝑣 , 𝑦𝑣 ↦ ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) ⟩ } )
58 15 14 57 csb ( Base ‘ 𝑢 ) / 𝑣 ( { ⟨ ( Base ‘ ndx ) , 𝑣 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝑢 ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) ⟩ ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( ·𝑠𝑢 ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑥𝑣 , 𝑦𝑣 ↦ ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) ⟩ } )
59 11 10 58 csb ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ( Base ‘ 𝑢 ) / 𝑣 ( { ⟨ ( Base ‘ ndx ) , 𝑣 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝑢 ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) ⟩ ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( ·𝑠𝑢 ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑥𝑣 , 𝑦𝑣 ↦ ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) ⟩ } )
60 3 6 59 cmpt ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ( Base ‘ 𝑢 ) / 𝑣 ( { ⟨ ( Base ‘ ndx ) , 𝑣 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝑢 ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) ⟩ ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( ·𝑠𝑢 ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑥𝑣 , 𝑦𝑣 ↦ ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) ⟩ } ) )
61 1 2 60 cmpt ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ( Base ‘ 𝑢 ) / 𝑣 ( { ⟨ ( Base ‘ ndx ) , 𝑣 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝑢 ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) ⟩ ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( ·𝑠𝑢 ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑥𝑣 , 𝑦𝑣 ↦ ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) ⟩ } ) ) )
62 0 61 wceq HLHil = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( ( DVecH ‘ 𝑘 ) ‘ 𝑤 ) / 𝑢 ( Base ‘ 𝑢 ) / 𝑣 ( { ⟨ ( Base ‘ ndx ) , 𝑣 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝑢 ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝑘 ) ‘ 𝑤 ) ⟩ ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( ·𝑠𝑢 ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑥𝑣 , 𝑦𝑣 ↦ ( ( ( ( HDMap ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑦 ) ‘ 𝑥 ) ) ⟩ } ) ) )