| Step | Hyp | Ref | Expression | 
						
							| 0 |  | chlh |  |-  HLHil | 
						
							| 1 |  | vk |  |-  k | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vw |  |-  w | 
						
							| 4 |  | clh |  |-  LHyp | 
						
							| 5 | 1 | cv |  |-  k | 
						
							| 6 | 5 4 | cfv |  |-  ( LHyp ` k ) | 
						
							| 7 |  | cdvh |  |-  DVecH | 
						
							| 8 | 5 7 | cfv |  |-  ( DVecH ` k ) | 
						
							| 9 | 3 | cv |  |-  w | 
						
							| 10 | 9 8 | cfv |  |-  ( ( DVecH ` k ) ` w ) | 
						
							| 11 |  | vu |  |-  u | 
						
							| 12 |  | cbs |  |-  Base | 
						
							| 13 | 11 | cv |  |-  u | 
						
							| 14 | 13 12 | cfv |  |-  ( Base ` u ) | 
						
							| 15 |  | vv |  |-  v | 
						
							| 16 |  | cnx |  |-  ndx | 
						
							| 17 | 16 12 | cfv |  |-  ( Base ` ndx ) | 
						
							| 18 | 15 | cv |  |-  v | 
						
							| 19 | 17 18 | cop |  |-  <. ( Base ` ndx ) , v >. | 
						
							| 20 |  | cplusg |  |-  +g | 
						
							| 21 | 16 20 | cfv |  |-  ( +g ` ndx ) | 
						
							| 22 | 13 20 | cfv |  |-  ( +g ` u ) | 
						
							| 23 | 21 22 | cop |  |-  <. ( +g ` ndx ) , ( +g ` u ) >. | 
						
							| 24 |  | csca |  |-  Scalar | 
						
							| 25 | 16 24 | cfv |  |-  ( Scalar ` ndx ) | 
						
							| 26 |  | cedring |  |-  EDRing | 
						
							| 27 | 5 26 | cfv |  |-  ( EDRing ` k ) | 
						
							| 28 | 9 27 | cfv |  |-  ( ( EDRing ` k ) ` w ) | 
						
							| 29 |  | csts |  |-  sSet | 
						
							| 30 |  | cstv |  |-  *r | 
						
							| 31 | 16 30 | cfv |  |-  ( *r ` ndx ) | 
						
							| 32 |  | chg |  |-  HGMap | 
						
							| 33 | 5 32 | cfv |  |-  ( HGMap ` k ) | 
						
							| 34 | 9 33 | cfv |  |-  ( ( HGMap ` k ) ` w ) | 
						
							| 35 | 31 34 | cop |  |-  <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. | 
						
							| 36 | 28 35 29 | co |  |-  ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) | 
						
							| 37 | 25 36 | cop |  |-  <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. | 
						
							| 38 | 19 23 37 | ctp |  |-  { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } | 
						
							| 39 |  | cvsca |  |-  .s | 
						
							| 40 | 16 39 | cfv |  |-  ( .s ` ndx ) | 
						
							| 41 | 13 39 | cfv |  |-  ( .s ` u ) | 
						
							| 42 | 40 41 | cop |  |-  <. ( .s ` ndx ) , ( .s ` u ) >. | 
						
							| 43 |  | cip |  |-  .i | 
						
							| 44 | 16 43 | cfv |  |-  ( .i ` ndx ) | 
						
							| 45 |  | vx |  |-  x | 
						
							| 46 |  | vy |  |-  y | 
						
							| 47 |  | chdma |  |-  HDMap | 
						
							| 48 | 5 47 | cfv |  |-  ( HDMap ` k ) | 
						
							| 49 | 9 48 | cfv |  |-  ( ( HDMap ` k ) ` w ) | 
						
							| 50 | 46 | cv |  |-  y | 
						
							| 51 | 50 49 | cfv |  |-  ( ( ( HDMap ` k ) ` w ) ` y ) | 
						
							| 52 | 45 | cv |  |-  x | 
						
							| 53 | 52 51 | cfv |  |-  ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) | 
						
							| 54 | 45 46 18 18 53 | cmpo |  |-  ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) | 
						
							| 55 | 44 54 | cop |  |-  <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. | 
						
							| 56 | 42 55 | cpr |  |-  { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } | 
						
							| 57 | 38 56 | cun |  |-  ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) | 
						
							| 58 | 15 14 57 | csb |  |-  [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) | 
						
							| 59 | 11 10 58 | csb |  |-  [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) | 
						
							| 60 | 3 6 59 | cmpt |  |-  ( w e. ( LHyp ` k ) |-> [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) ) | 
						
							| 61 | 1 2 60 | cmpt |  |-  ( k e. _V |-> ( w e. ( LHyp ` k ) |-> [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) ) ) | 
						
							| 62 | 0 61 | wceq |  |-  HLHil = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) ) ) |