Step |
Hyp |
Ref |
Expression |
0 |
|
chlh |
|- HLHil |
1 |
|
vk |
|- k |
2 |
|
cvv |
|- _V |
3 |
|
vw |
|- w |
4 |
|
clh |
|- LHyp |
5 |
1
|
cv |
|- k |
6 |
5 4
|
cfv |
|- ( LHyp ` k ) |
7 |
|
cdvh |
|- DVecH |
8 |
5 7
|
cfv |
|- ( DVecH ` k ) |
9 |
3
|
cv |
|- w |
10 |
9 8
|
cfv |
|- ( ( DVecH ` k ) ` w ) |
11 |
|
vu |
|- u |
12 |
|
cbs |
|- Base |
13 |
11
|
cv |
|- u |
14 |
13 12
|
cfv |
|- ( Base ` u ) |
15 |
|
vv |
|- v |
16 |
|
cnx |
|- ndx |
17 |
16 12
|
cfv |
|- ( Base ` ndx ) |
18 |
15
|
cv |
|- v |
19 |
17 18
|
cop |
|- <. ( Base ` ndx ) , v >. |
20 |
|
cplusg |
|- +g |
21 |
16 20
|
cfv |
|- ( +g ` ndx ) |
22 |
13 20
|
cfv |
|- ( +g ` u ) |
23 |
21 22
|
cop |
|- <. ( +g ` ndx ) , ( +g ` u ) >. |
24 |
|
csca |
|- Scalar |
25 |
16 24
|
cfv |
|- ( Scalar ` ndx ) |
26 |
|
cedring |
|- EDRing |
27 |
5 26
|
cfv |
|- ( EDRing ` k ) |
28 |
9 27
|
cfv |
|- ( ( EDRing ` k ) ` w ) |
29 |
|
csts |
|- sSet |
30 |
|
cstv |
|- *r |
31 |
16 30
|
cfv |
|- ( *r ` ndx ) |
32 |
|
chg |
|- HGMap |
33 |
5 32
|
cfv |
|- ( HGMap ` k ) |
34 |
9 33
|
cfv |
|- ( ( HGMap ` k ) ` w ) |
35 |
31 34
|
cop |
|- <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. |
36 |
28 35 29
|
co |
|- ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) |
37 |
25 36
|
cop |
|- <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. |
38 |
19 23 37
|
ctp |
|- { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } |
39 |
|
cvsca |
|- .s |
40 |
16 39
|
cfv |
|- ( .s ` ndx ) |
41 |
13 39
|
cfv |
|- ( .s ` u ) |
42 |
40 41
|
cop |
|- <. ( .s ` ndx ) , ( .s ` u ) >. |
43 |
|
cip |
|- .i |
44 |
16 43
|
cfv |
|- ( .i ` ndx ) |
45 |
|
vx |
|- x |
46 |
|
vy |
|- y |
47 |
|
chdma |
|- HDMap |
48 |
5 47
|
cfv |
|- ( HDMap ` k ) |
49 |
9 48
|
cfv |
|- ( ( HDMap ` k ) ` w ) |
50 |
46
|
cv |
|- y |
51 |
50 49
|
cfv |
|- ( ( ( HDMap ` k ) ` w ) ` y ) |
52 |
45
|
cv |
|- x |
53 |
52 51
|
cfv |
|- ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) |
54 |
45 46 18 18 53
|
cmpo |
|- ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) |
55 |
44 54
|
cop |
|- <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. |
56 |
42 55
|
cpr |
|- { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } |
57 |
38 56
|
cun |
|- ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) |
58 |
15 14 57
|
csb |
|- [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) |
59 |
11 10 58
|
csb |
|- [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) |
60 |
3 6 59
|
cmpt |
|- ( w e. ( LHyp ` k ) |-> [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) ) |
61 |
1 2 60
|
cmpt |
|- ( k e. _V |-> ( w e. ( LHyp ` k ) |-> [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) ) ) |
62 |
0 61
|
wceq |
|- HLHil = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> [_ ( ( DVecH ` k ) ` w ) / u ]_ [_ ( Base ` u ) / v ]_ ( { <. ( Base ` ndx ) , v >. , <. ( +g ` ndx ) , ( +g ` u ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` k ) ` w ) sSet <. ( *r ` ndx ) , ( ( HGMap ` k ) ` w ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` u ) >. , <. ( .i ` ndx ) , ( x e. v , y e. v |-> ( ( ( ( HDMap ` k ) ` w ) ` y ) ` x ) ) >. } ) ) ) |