Metamath Proof Explorer


Theorem hlhilbase

Description: The base set of the final constructed Hilbert space. (Contributed by NM, 21-Jun-2015) (Revised by Mario Carneiro, 28-Jun-2015)

Ref Expression
Hypotheses hlhilbase.h 𝐻 = ( LHyp ‘ 𝐾 )
hlhilbase.u 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 )
hlhilbase.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hlhilbase.l 𝐿 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hlhilbase.m 𝑀 = ( Base ‘ 𝐿 )
Assertion hlhilbase ( 𝜑𝑀 = ( Base ‘ 𝑈 ) )

Proof

Step Hyp Ref Expression
1 hlhilbase.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hlhilbase.u 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 )
3 hlhilbase.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
4 hlhilbase.l 𝐿 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
5 hlhilbase.m 𝑀 = ( Base ‘ 𝐿 )
6 5 fvexi 𝑀 ∈ V
7 eqid ( { ⟨ ( Base ‘ ndx ) , 𝑀 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝐿 ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( ·𝑠𝐿 ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑥𝑀 , 𝑦𝑀 ↦ ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) ) ⟩ } ) = ( { ⟨ ( Base ‘ ndx ) , 𝑀 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝐿 ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( ·𝑠𝐿 ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑥𝑀 , 𝑦𝑀 ↦ ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) ) ⟩ } )
8 7 phlbase ( 𝑀 ∈ V → 𝑀 = ( Base ‘ ( { ⟨ ( Base ‘ ndx ) , 𝑀 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝐿 ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( ·𝑠𝐿 ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑥𝑀 , 𝑦𝑀 ↦ ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) ) ⟩ } ) ) )
9 6 8 ax-mp 𝑀 = ( Base ‘ ( { ⟨ ( Base ‘ ndx ) , 𝑀 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝐿 ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( ·𝑠𝐿 ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑥𝑀 , 𝑦𝑀 ↦ ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) ) ⟩ } ) )
10 eqid ( +g𝐿 ) = ( +g𝐿 )
11 eqid ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )
12 eqid ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 )
13 eqid ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) = ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ )
14 eqid ( ·𝑠𝐿 ) = ( ·𝑠𝐿 )
15 eqid ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
16 eqid ( 𝑥𝑀 , 𝑦𝑀 ↦ ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) ) = ( 𝑥𝑀 , 𝑦𝑀 ↦ ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) )
17 1 2 4 5 10 11 12 13 14 15 16 3 hlhilset ( 𝜑𝑈 = ( { ⟨ ( Base ‘ ndx ) , 𝑀 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝐿 ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( ·𝑠𝐿 ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑥𝑀 , 𝑦𝑀 ↦ ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) ) ⟩ } ) )
18 17 fveq2d ( 𝜑 → ( Base ‘ 𝑈 ) = ( Base ‘ ( { ⟨ ( Base ‘ ndx ) , 𝑀 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝐿 ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( ·𝑠𝐿 ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑥𝑀 , 𝑦𝑀 ↦ ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) ) ⟩ } ) ) )
19 9 18 eqtr4id ( 𝜑𝑀 = ( Base ‘ 𝑈 ) )