Metamath Proof Explorer


Theorem hlhilplus

Description: The vector addition for the final constructed Hilbert space. (Contributed by NM, 21-Jun-2015)

Ref Expression
Hypotheses hlhilbase.h 𝐻 = ( LHyp ‘ 𝐾 )
hlhilbase.u 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 )
hlhilbase.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hlhilbase.l 𝐿 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hlhilplus.a + = ( +g𝐿 )
Assertion hlhilplus ( 𝜑+ = ( +g𝑈 ) )

Proof

Step Hyp Ref Expression
1 hlhilbase.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hlhilbase.u 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 )
3 hlhilbase.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
4 hlhilbase.l 𝐿 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
5 hlhilplus.a + = ( +g𝐿 )
6 5 fvexi + ∈ V
7 eqid ( { ⟨ ( Base ‘ ndx ) , ( Base ‘ 𝐿 ) ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( ·𝑠𝐿 ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐿 ) , 𝑦 ∈ ( Base ‘ 𝐿 ) ↦ ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) ) ⟩ } ) = ( { ⟨ ( Base ‘ ndx ) , ( Base ‘ 𝐿 ) ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( ·𝑠𝐿 ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐿 ) , 𝑦 ∈ ( Base ‘ 𝐿 ) ↦ ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) ) ⟩ } )
8 7 phlplusg ( + ∈ V → + = ( +g ‘ ( { ⟨ ( Base ‘ ndx ) , ( Base ‘ 𝐿 ) ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( ·𝑠𝐿 ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐿 ) , 𝑦 ∈ ( Base ‘ 𝐿 ) ↦ ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) ) ⟩ } ) ) )
9 6 8 ax-mp + = ( +g ‘ ( { ⟨ ( Base ‘ ndx ) , ( Base ‘ 𝐿 ) ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( ·𝑠𝐿 ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐿 ) , 𝑦 ∈ ( Base ‘ 𝐿 ) ↦ ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) ) ⟩ } ) )
10 eqid ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 )
11 eqid ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )
12 eqid ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 )
13 eqid ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) = ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ )
14 eqid ( ·𝑠𝐿 ) = ( ·𝑠𝐿 )
15 eqid ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
16 eqid ( 𝑥 ∈ ( Base ‘ 𝐿 ) , 𝑦 ∈ ( Base ‘ 𝐿 ) ↦ ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐿 ) , 𝑦 ∈ ( Base ‘ 𝐿 ) ↦ ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) )
17 1 2 4 10 5 11 12 13 14 15 16 3 hlhilset ( 𝜑𝑈 = ( { ⟨ ( Base ‘ ndx ) , ( Base ‘ 𝐿 ) ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( ·𝑠𝐿 ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐿 ) , 𝑦 ∈ ( Base ‘ 𝐿 ) ↦ ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) ) ⟩ } ) )
18 17 fveq2d ( 𝜑 → ( +g𝑈 ) = ( +g ‘ ( { ⟨ ( Base ‘ ndx ) , ( Base ‘ 𝐿 ) ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( ·𝑠𝐿 ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐿 ) , 𝑦 ∈ ( Base ‘ 𝐿 ) ↦ ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) ) ⟩ } ) ) )
19 9 18 eqtr4id ( 𝜑+ = ( +g𝑈 ) )