Metamath Proof Explorer


Theorem hlhilslem

Description: Lemma for hlhilsbase etc. (Contributed by Mario Carneiro, 28-Jun-2015) (Revised by AV, 6-Nov-2024)

Ref Expression
Hypotheses hlhilslem.h 𝐻 = ( LHyp ‘ 𝐾 )
hlhilslem.e 𝐸 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )
hlhilslem.u 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 )
hlhilslem.r 𝑅 = ( Scalar ‘ 𝑈 )
hlhilslem.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hlhilslem.f 𝐹 = Slot ( 𝐹 ‘ ndx )
hlhilslem.n ( 𝐹 ‘ ndx ) ≠ ( *𝑟 ‘ ndx )
hlhilslem.c 𝐶 = ( 𝐹𝐸 )
Assertion hlhilslem ( 𝜑𝐶 = ( 𝐹𝑅 ) )

Proof

Step Hyp Ref Expression
1 hlhilslem.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hlhilslem.e 𝐸 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )
3 hlhilslem.u 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 )
4 hlhilslem.r 𝑅 = ( Scalar ‘ 𝑈 )
5 hlhilslem.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
6 hlhilslem.f 𝐹 = Slot ( 𝐹 ‘ ndx )
7 hlhilslem.n ( 𝐹 ‘ ndx ) ≠ ( *𝑟 ‘ ndx )
8 hlhilslem.c 𝐶 = ( 𝐹𝐸 )
9 6 7 setsnid ( 𝐹𝐸 ) = ( 𝐹 ‘ ( 𝐸 sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) )
10 8 9 eqtri 𝐶 = ( 𝐹 ‘ ( 𝐸 sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) )
11 eqid ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 )
12 eqid ( 𝐸 sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) = ( 𝐸 sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ )
13 1 3 5 2 11 12 hlhilsca ( 𝜑 → ( 𝐸 sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) = ( Scalar ‘ 𝑈 ) )
14 13 4 eqtr4di ( 𝜑 → ( 𝐸 sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) = 𝑅 )
15 14 fveq2d ( 𝜑 → ( 𝐹 ‘ ( 𝐸 sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) ) = ( 𝐹𝑅 ) )
16 10 15 syl5eq ( 𝜑𝐶 = ( 𝐹𝑅 ) )