Step |
Hyp |
Ref |
Expression |
1 |
|
hlhilslem.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hlhilslem.e |
⊢ 𝐸 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hlhilslem.u |
⊢ 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
hlhilslem.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
5 |
|
hlhilslem.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
6 |
|
hlhilslem.f |
⊢ 𝐹 = Slot ( 𝐹 ‘ ndx ) |
7 |
|
hlhilslem.n |
⊢ ( 𝐹 ‘ ndx ) ≠ ( *𝑟 ‘ ndx ) |
8 |
|
hlhilslem.c |
⊢ 𝐶 = ( 𝐹 ‘ 𝐸 ) |
9 |
6 7
|
setsnid |
⊢ ( 𝐹 ‘ 𝐸 ) = ( 𝐹 ‘ ( 𝐸 sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) ) |
10 |
8 9
|
eqtri |
⊢ 𝐶 = ( 𝐹 ‘ ( 𝐸 sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) ) |
11 |
|
eqid |
⊢ ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) |
12 |
|
eqid |
⊢ ( 𝐸 sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) = ( 𝐸 sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) |
13 |
1 3 5 2 11 12
|
hlhilsca |
⊢ ( 𝜑 → ( 𝐸 sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) = ( Scalar ‘ 𝑈 ) ) |
14 |
13 4
|
eqtr4di |
⊢ ( 𝜑 → ( 𝐸 sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) = 𝑅 ) |
15 |
14
|
fveq2d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐸 sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) ) = ( 𝐹 ‘ 𝑅 ) ) |
16 |
10 15
|
syl5eq |
⊢ ( 𝜑 → 𝐶 = ( 𝐹 ‘ 𝑅 ) ) |