Metamath Proof Explorer


Theorem hlhilslem

Description: Lemma for hlhilsbase2 . (Contributed by Mario Carneiro, 28-Jun-2015)

Ref Expression
Hypotheses hlhilslem.h 𝐻 = ( LHyp ‘ 𝐾 )
hlhilslem.e 𝐸 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )
hlhilslem.u 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 )
hlhilslem.r 𝑅 = ( Scalar ‘ 𝑈 )
hlhilslem.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hlhilslem.f 𝐹 = Slot 𝑁
hlhilslem.1 𝑁 ∈ ℕ
hlhilslem.2 𝑁 < 4
hlhilslem.c 𝐶 = ( 𝐹𝐸 )
Assertion hlhilslem ( 𝜑𝐶 = ( 𝐹𝑅 ) )

Proof

Step Hyp Ref Expression
1 hlhilslem.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hlhilslem.e 𝐸 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )
3 hlhilslem.u 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 )
4 hlhilslem.r 𝑅 = ( Scalar ‘ 𝑈 )
5 hlhilslem.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
6 hlhilslem.f 𝐹 = Slot 𝑁
7 hlhilslem.1 𝑁 ∈ ℕ
8 hlhilslem.2 𝑁 < 4
9 hlhilslem.c 𝐶 = ( 𝐹𝐸 )
10 6 7 ndxid 𝐹 = Slot ( 𝐹 ‘ ndx )
11 7 nnrei 𝑁 ∈ ℝ
12 11 8 ltneii 𝑁 ≠ 4
13 6 7 ndxarg ( 𝐹 ‘ ndx ) = 𝑁
14 starvndx ( *𝑟 ‘ ndx ) = 4
15 13 14 neeq12i ( ( 𝐹 ‘ ndx ) ≠ ( *𝑟 ‘ ndx ) ↔ 𝑁 ≠ 4 )
16 12 15 mpbir ( 𝐹 ‘ ndx ) ≠ ( *𝑟 ‘ ndx )
17 10 16 setsnid ( 𝐹𝐸 ) = ( 𝐹 ‘ ( 𝐸 sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) )
18 9 17 eqtri 𝐶 = ( 𝐹 ‘ ( 𝐸 sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) )
19 eqid ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 )
20 eqid ( 𝐸 sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) = ( 𝐸 sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ )
21 1 3 5 2 19 20 hlhilsca ( 𝜑 → ( 𝐸 sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) = ( Scalar ‘ 𝑈 ) )
22 21 4 eqtr4di ( 𝜑 → ( 𝐸 sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) = 𝑅 )
23 22 fveq2d ( 𝜑 → ( 𝐹 ‘ ( 𝐸 sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) ) = ( 𝐹𝑅 ) )
24 18 23 syl5eq ( 𝜑𝐶 = ( 𝐹𝑅 ) )