| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hlhilslem.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hlhilslem.e | ⊢ 𝐸  =  ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hlhilslem.u | ⊢ 𝑈  =  ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | hlhilslem.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 5 |  | hlhilslem.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 6 |  | hlhilslem.f | ⊢ 𝐹  =  Slot  ( 𝐹 ‘ ndx ) | 
						
							| 7 |  | hlhilslem.n | ⊢ ( 𝐹 ‘ ndx )  ≠  ( *𝑟 ‘ ndx ) | 
						
							| 8 |  | hlhilslem.c | ⊢ 𝐶  =  ( 𝐹 ‘ 𝐸 ) | 
						
							| 9 | 6 7 | setsnid | ⊢ ( 𝐹 ‘ 𝐸 )  =  ( 𝐹 ‘ ( 𝐸  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) ) | 
						
							| 10 | 8 9 | eqtri | ⊢ 𝐶  =  ( 𝐹 ‘ ( 𝐸  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) ) | 
						
							| 11 |  | eqid | ⊢ ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 12 |  | eqid | ⊢ ( 𝐸  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 )  =  ( 𝐸  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) | 
						
							| 13 | 1 3 5 2 11 12 | hlhilsca | ⊢ ( 𝜑  →  ( 𝐸  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 )  =  ( Scalar ‘ 𝑈 ) ) | 
						
							| 14 | 13 4 | eqtr4di | ⊢ ( 𝜑  →  ( 𝐸  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 )  =  𝑅 ) | 
						
							| 15 | 14 | fveq2d | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝐸  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) )  =  ( 𝐹 ‘ 𝑅 ) ) | 
						
							| 16 | 10 15 | eqtrid | ⊢ ( 𝜑  →  𝐶  =  ( 𝐹 ‘ 𝑅 ) ) |