Metamath Proof Explorer


Theorem hlhilsbase

Description: The scalar base set of the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015) (Revised by Mario Carneiro, 28-Jun-2015) (Revised by AV, 6-Nov-2024)

Ref Expression
Hypotheses hlhilslem.h 𝐻 = ( LHyp ‘ 𝐾 )
hlhilslem.e 𝐸 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )
hlhilslem.u 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 )
hlhilslem.r 𝑅 = ( Scalar ‘ 𝑈 )
hlhilslem.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hlhilsbase.c 𝐶 = ( Base ‘ 𝐸 )
Assertion hlhilsbase ( 𝜑𝐶 = ( Base ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 hlhilslem.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hlhilslem.e 𝐸 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )
3 hlhilslem.u 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 )
4 hlhilslem.r 𝑅 = ( Scalar ‘ 𝑈 )
5 hlhilslem.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
6 hlhilsbase.c 𝐶 = ( Base ‘ 𝐸 )
7 baseid Base = Slot ( Base ‘ ndx )
8 starvndxnbasendx ( *𝑟 ‘ ndx ) ≠ ( Base ‘ ndx )
9 8 necomi ( Base ‘ ndx ) ≠ ( *𝑟 ‘ ndx )
10 1 2 3 4 5 7 9 6 hlhilslem ( 𝜑𝐶 = ( Base ‘ 𝑅 ) )