Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of involution and inner product from a Hilbert lattice
hlhilsbaseOLD
Metamath Proof Explorer
Description: Obsolete version of hlhilsbase as of 6-Nov-2024. The scalar base
set of the final constructed Hilbert space. (Contributed by NM , 22-Jun-2015) (Revised by Mario Carneiro , 28-Jun-2015)
(New usage is discouraged.) (Proof modification is discouraged.)
Ref
Expression
Hypotheses
hlhilslem.h
⊢ 𝐻 = ( LHyp ‘ 𝐾 )
hlhilslem.e
⊢ 𝐸 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )
hlhilslem.u
⊢ 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 )
hlhilslem.r
⊢ 𝑅 = ( Scalar ‘ 𝑈 )
hlhilslem.k
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) )
hlhilsbase.c
⊢ 𝐶 = ( Base ‘ 𝐸 )
Assertion
hlhilsbaseOLD
⊢ ( 𝜑 → 𝐶 = ( Base ‘ 𝑅 ) )
Proof
Step
Hyp
Ref
Expression
1
hlhilslem.h
⊢ 𝐻 = ( LHyp ‘ 𝐾 )
2
hlhilslem.e
⊢ 𝐸 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )
3
hlhilslem.u
⊢ 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 )
4
hlhilslem.r
⊢ 𝑅 = ( Scalar ‘ 𝑈 )
5
hlhilslem.k
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) )
6
hlhilsbase.c
⊢ 𝐶 = ( Base ‘ 𝐸 )
7
df-base
⊢ Base = Slot 1
8
1nn
⊢ 1 ∈ ℕ
9
1lt4
⊢ 1 < 4
10
1 2 3 4 5 7 8 9 6
hlhilslemOLD
⊢ ( 𝜑 → 𝐶 = ( Base ‘ 𝑅 ) )