Metamath Proof Explorer


Theorem hlhilsbaseOLD

Description: Obsolete version of hlhilsbase as of 6-Nov-2024. The scalar base set of the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015) (Revised by Mario Carneiro, 28-Jun-2015) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses hlhilslem.h 𝐻 = ( LHyp ‘ 𝐾 )
hlhilslem.e 𝐸 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )
hlhilslem.u 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 )
hlhilslem.r 𝑅 = ( Scalar ‘ 𝑈 )
hlhilslem.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hlhilsbase.c 𝐶 = ( Base ‘ 𝐸 )
Assertion hlhilsbaseOLD ( 𝜑𝐶 = ( Base ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 hlhilslem.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hlhilslem.e 𝐸 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )
3 hlhilslem.u 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 )
4 hlhilslem.r 𝑅 = ( Scalar ‘ 𝑈 )
5 hlhilslem.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
6 hlhilsbase.c 𝐶 = ( Base ‘ 𝐸 )
7 df-base Base = Slot 1
8 1nn 1 ∈ ℕ
9 1lt4 1 < 4
10 1 2 3 4 5 7 8 9 6 hlhilslemOLD ( 𝜑𝐶 = ( Base ‘ 𝑅 ) )