Step |
Hyp |
Ref |
Expression |
1 |
|
hlhilslem.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hlhilslem.e |
⊢ 𝐸 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hlhilslem.u |
⊢ 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
hlhilslem.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
5 |
|
hlhilslem.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
6 |
|
hlhilslemOLD.f |
⊢ 𝐹 = Slot 𝑁 |
7 |
|
hlhilslemOLD.1 |
⊢ 𝑁 ∈ ℕ |
8 |
|
hlhilslemOLD.2 |
⊢ 𝑁 < 4 |
9 |
|
hlhilslemOLD.c |
⊢ 𝐶 = ( 𝐹 ‘ 𝐸 ) |
10 |
6 7
|
ndxid |
⊢ 𝐹 = Slot ( 𝐹 ‘ ndx ) |
11 |
7
|
nnrei |
⊢ 𝑁 ∈ ℝ |
12 |
11 8
|
ltneii |
⊢ 𝑁 ≠ 4 |
13 |
6 7
|
ndxarg |
⊢ ( 𝐹 ‘ ndx ) = 𝑁 |
14 |
|
starvndx |
⊢ ( *𝑟 ‘ ndx ) = 4 |
15 |
13 14
|
neeq12i |
⊢ ( ( 𝐹 ‘ ndx ) ≠ ( *𝑟 ‘ ndx ) ↔ 𝑁 ≠ 4 ) |
16 |
12 15
|
mpbir |
⊢ ( 𝐹 ‘ ndx ) ≠ ( *𝑟 ‘ ndx ) |
17 |
10 16
|
setsnid |
⊢ ( 𝐹 ‘ 𝐸 ) = ( 𝐹 ‘ ( 𝐸 sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) ) |
18 |
9 17
|
eqtri |
⊢ 𝐶 = ( 𝐹 ‘ ( 𝐸 sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) ) |
19 |
|
eqid |
⊢ ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) |
20 |
|
eqid |
⊢ ( 𝐸 sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) = ( 𝐸 sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) |
21 |
1 3 5 2 19 20
|
hlhilsca |
⊢ ( 𝜑 → ( 𝐸 sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) = ( Scalar ‘ 𝑈 ) ) |
22 |
21 4
|
eqtr4di |
⊢ ( 𝜑 → ( 𝐸 sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) = 𝑅 ) |
23 |
22
|
fveq2d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐸 sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) ) = ( 𝐹 ‘ 𝑅 ) ) |
24 |
18 23
|
syl5eq |
⊢ ( 𝜑 → 𝐶 = ( 𝐹 ‘ 𝑅 ) ) |