| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hlhilslem.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hlhilslem.e | ⊢ 𝐸  =  ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hlhilslem.u | ⊢ 𝑈  =  ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | hlhilslem.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 5 |  | hlhilslem.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 6 |  | hlhilslemOLD.f | ⊢ 𝐹  =  Slot  𝑁 | 
						
							| 7 |  | hlhilslemOLD.1 | ⊢ 𝑁  ∈  ℕ | 
						
							| 8 |  | hlhilslemOLD.2 | ⊢ 𝑁  <  4 | 
						
							| 9 |  | hlhilslemOLD.c | ⊢ 𝐶  =  ( 𝐹 ‘ 𝐸 ) | 
						
							| 10 | 6 7 | ndxid | ⊢ 𝐹  =  Slot  ( 𝐹 ‘ ndx ) | 
						
							| 11 | 7 | nnrei | ⊢ 𝑁  ∈  ℝ | 
						
							| 12 | 11 8 | ltneii | ⊢ 𝑁  ≠  4 | 
						
							| 13 | 6 7 | ndxarg | ⊢ ( 𝐹 ‘ ndx )  =  𝑁 | 
						
							| 14 |  | starvndx | ⊢ ( *𝑟 ‘ ndx )  =  4 | 
						
							| 15 | 13 14 | neeq12i | ⊢ ( ( 𝐹 ‘ ndx )  ≠  ( *𝑟 ‘ ndx )  ↔  𝑁  ≠  4 ) | 
						
							| 16 | 12 15 | mpbir | ⊢ ( 𝐹 ‘ ndx )  ≠  ( *𝑟 ‘ ndx ) | 
						
							| 17 | 10 16 | setsnid | ⊢ ( 𝐹 ‘ 𝐸 )  =  ( 𝐹 ‘ ( 𝐸  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) ) | 
						
							| 18 | 9 17 | eqtri | ⊢ 𝐶  =  ( 𝐹 ‘ ( 𝐸  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) ) | 
						
							| 19 |  | eqid | ⊢ ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 20 |  | eqid | ⊢ ( 𝐸  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 )  =  ( 𝐸  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) | 
						
							| 21 | 1 3 5 2 19 20 | hlhilsca | ⊢ ( 𝜑  →  ( 𝐸  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 )  =  ( Scalar ‘ 𝑈 ) ) | 
						
							| 22 | 21 4 | eqtr4di | ⊢ ( 𝜑  →  ( 𝐸  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 )  =  𝑅 ) | 
						
							| 23 | 22 | fveq2d | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝐸  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) )  =  ( 𝐹 ‘ 𝑅 ) ) | 
						
							| 24 | 18 23 | eqtrid | ⊢ ( 𝜑  →  𝐶  =  ( 𝐹 ‘ 𝑅 ) ) |