Step |
Hyp |
Ref |
Expression |
1 |
|
hlhilslem.h |
|- H = ( LHyp ` K ) |
2 |
|
hlhilslem.e |
|- E = ( ( EDRing ` K ) ` W ) |
3 |
|
hlhilslem.u |
|- U = ( ( HLHil ` K ) ` W ) |
4 |
|
hlhilslem.r |
|- R = ( Scalar ` U ) |
5 |
|
hlhilslem.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
6 |
|
hlhilslemOLD.f |
|- F = Slot N |
7 |
|
hlhilslemOLD.1 |
|- N e. NN |
8 |
|
hlhilslemOLD.2 |
|- N < 4 |
9 |
|
hlhilslemOLD.c |
|- C = ( F ` E ) |
10 |
6 7
|
ndxid |
|- F = Slot ( F ` ndx ) |
11 |
7
|
nnrei |
|- N e. RR |
12 |
11 8
|
ltneii |
|- N =/= 4 |
13 |
6 7
|
ndxarg |
|- ( F ` ndx ) = N |
14 |
|
starvndx |
|- ( *r ` ndx ) = 4 |
15 |
13 14
|
neeq12i |
|- ( ( F ` ndx ) =/= ( *r ` ndx ) <-> N =/= 4 ) |
16 |
12 15
|
mpbir |
|- ( F ` ndx ) =/= ( *r ` ndx ) |
17 |
10 16
|
setsnid |
|- ( F ` E ) = ( F ` ( E sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) ) |
18 |
9 17
|
eqtri |
|- C = ( F ` ( E sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) ) |
19 |
|
eqid |
|- ( ( HGMap ` K ) ` W ) = ( ( HGMap ` K ) ` W ) |
20 |
|
eqid |
|- ( E sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) = ( E sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) |
21 |
1 3 5 2 19 20
|
hlhilsca |
|- ( ph -> ( E sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) = ( Scalar ` U ) ) |
22 |
21 4
|
eqtr4di |
|- ( ph -> ( E sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) = R ) |
23 |
22
|
fveq2d |
|- ( ph -> ( F ` ( E sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) ) = ( F ` R ) ) |
24 |
18 23
|
syl5eq |
|- ( ph -> C = ( F ` R ) ) |