| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hlhilslem.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hlhilslem.e |  |-  E = ( ( EDRing ` K ) ` W ) | 
						
							| 3 |  | hlhilslem.u |  |-  U = ( ( HLHil ` K ) ` W ) | 
						
							| 4 |  | hlhilslem.r |  |-  R = ( Scalar ` U ) | 
						
							| 5 |  | hlhilslem.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 6 |  | hlhilslemOLD.f |  |-  F = Slot N | 
						
							| 7 |  | hlhilslemOLD.1 |  |-  N e. NN | 
						
							| 8 |  | hlhilslemOLD.2 |  |-  N < 4 | 
						
							| 9 |  | hlhilslemOLD.c |  |-  C = ( F ` E ) | 
						
							| 10 | 6 7 | ndxid |  |-  F = Slot ( F ` ndx ) | 
						
							| 11 | 7 | nnrei |  |-  N e. RR | 
						
							| 12 | 11 8 | ltneii |  |-  N =/= 4 | 
						
							| 13 | 6 7 | ndxarg |  |-  ( F ` ndx ) = N | 
						
							| 14 |  | starvndx |  |-  ( *r ` ndx ) = 4 | 
						
							| 15 | 13 14 | neeq12i |  |-  ( ( F ` ndx ) =/= ( *r ` ndx ) <-> N =/= 4 ) | 
						
							| 16 | 12 15 | mpbir |  |-  ( F ` ndx ) =/= ( *r ` ndx ) | 
						
							| 17 | 10 16 | setsnid |  |-  ( F ` E ) = ( F ` ( E sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) ) | 
						
							| 18 | 9 17 | eqtri |  |-  C = ( F ` ( E sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) ) | 
						
							| 19 |  | eqid |  |-  ( ( HGMap ` K ) ` W ) = ( ( HGMap ` K ) ` W ) | 
						
							| 20 |  | eqid |  |-  ( E sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) = ( E sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) | 
						
							| 21 | 1 3 5 2 19 20 | hlhilsca |  |-  ( ph -> ( E sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) = ( Scalar ` U ) ) | 
						
							| 22 | 21 4 | eqtr4di |  |-  ( ph -> ( E sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) = R ) | 
						
							| 23 | 22 | fveq2d |  |-  ( ph -> ( F ` ( E sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) ) = ( F ` R ) ) | 
						
							| 24 | 18 23 | eqtrid |  |-  ( ph -> C = ( F ` R ) ) |