Description: The scalar base set of the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015) (Revised by Mario Carneiro, 28-Jun-2015) (Revised by AV, 6-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hlhilslem.h | |- H = ( LHyp ` K ) | |
| hlhilslem.e | |- E = ( ( EDRing ` K ) ` W ) | ||
| hlhilslem.u | |- U = ( ( HLHil ` K ) ` W ) | ||
| hlhilslem.r | |- R = ( Scalar ` U ) | ||
| hlhilslem.k | |- ( ph -> ( K e. HL /\ W e. H ) ) | ||
| hlhilsbase.c | |- C = ( Base ` E ) | ||
| Assertion | hlhilsbase | |- ( ph -> C = ( Base ` R ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hlhilslem.h | |- H = ( LHyp ` K ) | |
| 2 | hlhilslem.e | |- E = ( ( EDRing ` K ) ` W ) | |
| 3 | hlhilslem.u | |- U = ( ( HLHil ` K ) ` W ) | |
| 4 | hlhilslem.r | |- R = ( Scalar ` U ) | |
| 5 | hlhilslem.k | |- ( ph -> ( K e. HL /\ W e. H ) ) | |
| 6 | hlhilsbase.c | |- C = ( Base ` E ) | |
| 7 | baseid | |- Base = Slot ( Base ` ndx ) | |
| 8 | starvndxnbasendx | |- ( *r ` ndx ) =/= ( Base ` ndx ) | |
| 9 | 8 | necomi | |- ( Base ` ndx ) =/= ( *r ` ndx ) | 
| 10 | 1 2 3 4 5 7 9 6 | hlhilslem | |- ( ph -> C = ( Base ` R ) ) |