Metamath Proof Explorer


Theorem hlhilslem

Description: Lemma for hlhilsbase2 . (Contributed by Mario Carneiro, 28-Jun-2015)

Ref Expression
Hypotheses hlhilslem.h
|- H = ( LHyp ` K )
hlhilslem.e
|- E = ( ( EDRing ` K ) ` W )
hlhilslem.u
|- U = ( ( HLHil ` K ) ` W )
hlhilslem.r
|- R = ( Scalar ` U )
hlhilslem.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hlhilslem.f
|- F = Slot N
hlhilslem.1
|- N e. NN
hlhilslem.2
|- N < 4
hlhilslem.c
|- C = ( F ` E )
Assertion hlhilslem
|- ( ph -> C = ( F ` R ) )

Proof

Step Hyp Ref Expression
1 hlhilslem.h
 |-  H = ( LHyp ` K )
2 hlhilslem.e
 |-  E = ( ( EDRing ` K ) ` W )
3 hlhilslem.u
 |-  U = ( ( HLHil ` K ) ` W )
4 hlhilslem.r
 |-  R = ( Scalar ` U )
5 hlhilslem.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
6 hlhilslem.f
 |-  F = Slot N
7 hlhilslem.1
 |-  N e. NN
8 hlhilslem.2
 |-  N < 4
9 hlhilslem.c
 |-  C = ( F ` E )
10 6 7 ndxid
 |-  F = Slot ( F ` ndx )
11 7 nnrei
 |-  N e. RR
12 11 8 ltneii
 |-  N =/= 4
13 6 7 ndxarg
 |-  ( F ` ndx ) = N
14 starvndx
 |-  ( *r ` ndx ) = 4
15 13 14 neeq12i
 |-  ( ( F ` ndx ) =/= ( *r ` ndx ) <-> N =/= 4 )
16 12 15 mpbir
 |-  ( F ` ndx ) =/= ( *r ` ndx )
17 10 16 setsnid
 |-  ( F ` E ) = ( F ` ( E sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) )
18 9 17 eqtri
 |-  C = ( F ` ( E sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) )
19 eqid
 |-  ( ( HGMap ` K ) ` W ) = ( ( HGMap ` K ) ` W )
20 eqid
 |-  ( E sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) = ( E sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. )
21 1 3 5 2 19 20 hlhilsca
 |-  ( ph -> ( E sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) = ( Scalar ` U ) )
22 21 4 eqtr4di
 |-  ( ph -> ( E sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) = R )
23 22 fveq2d
 |-  ( ph -> ( F ` ( E sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) ) = ( F ` R ) )
24 18 23 syl5eq
 |-  ( ph -> C = ( F ` R ) )