| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hlhilslem.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hlhilslem.e |
|- E = ( ( EDRing ` K ) ` W ) |
| 3 |
|
hlhilslem.u |
|- U = ( ( HLHil ` K ) ` W ) |
| 4 |
|
hlhilslem.r |
|- R = ( Scalar ` U ) |
| 5 |
|
hlhilslem.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 6 |
|
hlhilslem.f |
|- F = Slot ( F ` ndx ) |
| 7 |
|
hlhilslem.n |
|- ( F ` ndx ) =/= ( *r ` ndx ) |
| 8 |
|
hlhilslem.c |
|- C = ( F ` E ) |
| 9 |
6 7
|
setsnid |
|- ( F ` E ) = ( F ` ( E sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) ) |
| 10 |
8 9
|
eqtri |
|- C = ( F ` ( E sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) ) |
| 11 |
|
eqid |
|- ( ( HGMap ` K ) ` W ) = ( ( HGMap ` K ) ` W ) |
| 12 |
|
eqid |
|- ( E sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) = ( E sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) |
| 13 |
1 3 5 2 11 12
|
hlhilsca |
|- ( ph -> ( E sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) = ( Scalar ` U ) ) |
| 14 |
13 4
|
eqtr4di |
|- ( ph -> ( E sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) = R ) |
| 15 |
14
|
fveq2d |
|- ( ph -> ( F ` ( E sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) ) = ( F ` R ) ) |
| 16 |
10 15
|
eqtrid |
|- ( ph -> C = ( F ` R ) ) |