Metamath Proof Explorer


Theorem hlhilslem

Description: Lemma for hlhilsbase etc. (Contributed by Mario Carneiro, 28-Jun-2015) (Revised by AV, 6-Nov-2024)

Ref Expression
Hypotheses hlhilslem.h
|- H = ( LHyp ` K )
hlhilslem.e
|- E = ( ( EDRing ` K ) ` W )
hlhilslem.u
|- U = ( ( HLHil ` K ) ` W )
hlhilslem.r
|- R = ( Scalar ` U )
hlhilslem.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hlhilslem.f
|- F = Slot ( F ` ndx )
hlhilslem.n
|- ( F ` ndx ) =/= ( *r ` ndx )
hlhilslem.c
|- C = ( F ` E )
Assertion hlhilslem
|- ( ph -> C = ( F ` R ) )

Proof

Step Hyp Ref Expression
1 hlhilslem.h
 |-  H = ( LHyp ` K )
2 hlhilslem.e
 |-  E = ( ( EDRing ` K ) ` W )
3 hlhilslem.u
 |-  U = ( ( HLHil ` K ) ` W )
4 hlhilslem.r
 |-  R = ( Scalar ` U )
5 hlhilslem.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
6 hlhilslem.f
 |-  F = Slot ( F ` ndx )
7 hlhilslem.n
 |-  ( F ` ndx ) =/= ( *r ` ndx )
8 hlhilslem.c
 |-  C = ( F ` E )
9 6 7 setsnid
 |-  ( F ` E ) = ( F ` ( E sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) )
10 8 9 eqtri
 |-  C = ( F ` ( E sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) )
11 eqid
 |-  ( ( HGMap ` K ) ` W ) = ( ( HGMap ` K ) ` W )
12 eqid
 |-  ( E sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) = ( E sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. )
13 1 3 5 2 11 12 hlhilsca
 |-  ( ph -> ( E sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) = ( Scalar ` U ) )
14 13 4 eqtr4di
 |-  ( ph -> ( E sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) = R )
15 14 fveq2d
 |-  ( ph -> ( F ` ( E sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) ) = ( F ` R ) )
16 10 15 syl5eq
 |-  ( ph -> C = ( F ` R ) )