Metamath Proof Explorer


Theorem hlhilslem

Description: Lemma for hlhilsbase2 . (Contributed by Mario Carneiro, 28-Jun-2015)

Ref Expression
Hypotheses hlhilslem.h H = LHyp K
hlhilslem.e E = EDRing K W
hlhilslem.u U = HLHil K W
hlhilslem.r R = Scalar U
hlhilslem.k φ K HL W H
hlhilslem.f F = Slot N
hlhilslem.1 N
hlhilslem.2 N < 4
hlhilslem.c C = F E
Assertion hlhilslem φ C = F R

Proof

Step Hyp Ref Expression
1 hlhilslem.h H = LHyp K
2 hlhilslem.e E = EDRing K W
3 hlhilslem.u U = HLHil K W
4 hlhilslem.r R = Scalar U
5 hlhilslem.k φ K HL W H
6 hlhilslem.f F = Slot N
7 hlhilslem.1 N
8 hlhilslem.2 N < 4
9 hlhilslem.c C = F E
10 6 7 ndxid F = Slot F ndx
11 7 nnrei N
12 11 8 ltneii N 4
13 6 7 ndxarg F ndx = N
14 starvndx * ndx = 4
15 13 14 neeq12i F ndx * ndx N 4
16 12 15 mpbir F ndx * ndx
17 10 16 setsnid F E = F E sSet * ndx HGMap K W
18 9 17 eqtri C = F E sSet * ndx HGMap K W
19 eqid HGMap K W = HGMap K W
20 eqid E sSet * ndx HGMap K W = E sSet * ndx HGMap K W
21 1 3 5 2 19 20 hlhilsca φ E sSet * ndx HGMap K W = Scalar U
22 21 4 eqtr4di φ E sSet * ndx HGMap K W = R
23 22 fveq2d φ F E sSet * ndx HGMap K W = F R
24 18 23 syl5eq φ C = F R