Metamath Proof Explorer


Theorem hlhilslem

Description: Lemma for hlhilsbase etc. (Contributed by Mario Carneiro, 28-Jun-2015) (Revised by AV, 6-Nov-2024)

Ref Expression
Hypotheses hlhilslem.h H=LHypK
hlhilslem.e E=EDRingKW
hlhilslem.u U=HLHilKW
hlhilslem.r R=ScalarU
hlhilslem.k φKHLWH
hlhilslem.f F=SlotFndx
hlhilslem.n Fndx*ndx
hlhilslem.c C=FE
Assertion hlhilslem φC=FR

Proof

Step Hyp Ref Expression
1 hlhilslem.h H=LHypK
2 hlhilslem.e E=EDRingKW
3 hlhilslem.u U=HLHilKW
4 hlhilslem.r R=ScalarU
5 hlhilslem.k φKHLWH
6 hlhilslem.f F=SlotFndx
7 hlhilslem.n Fndx*ndx
8 hlhilslem.c C=FE
9 6 7 setsnid FE=FEsSet*ndxHGMapKW
10 8 9 eqtri C=FEsSet*ndxHGMapKW
11 eqid HGMapKW=HGMapKW
12 eqid EsSet*ndxHGMapKW=EsSet*ndxHGMapKW
13 1 3 5 2 11 12 hlhilsca φEsSet*ndxHGMapKW=ScalarU
14 13 4 eqtr4di φEsSet*ndxHGMapKW=R
15 14 fveq2d φFEsSet*ndxHGMapKW=FR
16 10 15 eqtrid φC=FR