Metamath Proof Explorer


Theorem hlhilslem

Description: Lemma for hlhilsbase etc. (Contributed by Mario Carneiro, 28-Jun-2015) (Revised by AV, 6-Nov-2024)

Ref Expression
Hypotheses hlhilslem.h H = LHyp K
hlhilslem.e E = EDRing K W
hlhilslem.u U = HLHil K W
hlhilslem.r R = Scalar U
hlhilslem.k φ K HL W H
hlhilslem.f F = Slot F ndx
hlhilslem.n F ndx * ndx
hlhilslem.c C = F E
Assertion hlhilslem φ C = F R

Proof

Step Hyp Ref Expression
1 hlhilslem.h H = LHyp K
2 hlhilslem.e E = EDRing K W
3 hlhilslem.u U = HLHil K W
4 hlhilslem.r R = Scalar U
5 hlhilslem.k φ K HL W H
6 hlhilslem.f F = Slot F ndx
7 hlhilslem.n F ndx * ndx
8 hlhilslem.c C = F E
9 6 7 setsnid F E = F E sSet * ndx HGMap K W
10 8 9 eqtri C = F E sSet * ndx HGMap K W
11 eqid HGMap K W = HGMap K W
12 eqid E sSet * ndx HGMap K W = E sSet * ndx HGMap K W
13 1 3 5 2 11 12 hlhilsca φ E sSet * ndx HGMap K W = Scalar U
14 13 4 eqtr4di φ E sSet * ndx HGMap K W = R
15 14 fveq2d φ F E sSet * ndx HGMap K W = F R
16 10 15 syl5eq φ C = F R