Metamath Proof Explorer


Theorem hlhilsbase

Description: The scalar base set of the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015) (Revised by Mario Carneiro, 28-Jun-2015)

Ref Expression
Hypotheses hlhilslem.h H = LHyp K
hlhilslem.e E = EDRing K W
hlhilslem.u U = HLHil K W
hlhilslem.r R = Scalar U
hlhilslem.k φ K HL W H
hlhilsbase.c C = Base E
Assertion hlhilsbase φ C = Base R

Proof

Step Hyp Ref Expression
1 hlhilslem.h H = LHyp K
2 hlhilslem.e E = EDRing K W
3 hlhilslem.u U = HLHil K W
4 hlhilslem.r R = Scalar U
5 hlhilslem.k φ K HL W H
6 hlhilsbase.c C = Base E
7 df-base Base = Slot 1
8 1nn 1
9 1lt4 1 < 4
10 1 2 3 4 5 7 8 9 6 hlhilslem φ C = Base R