Metamath Proof Explorer


Theorem hlhilsplus

Description: Scalar addition for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015) (Revised by Mario Carneiro, 28-Jun-2015) (Revised by AV, 6-Nov-2024)

Ref Expression
Hypotheses hlhilslem.h H = LHyp K
hlhilslem.e E = EDRing K W
hlhilslem.u U = HLHil K W
hlhilslem.r R = Scalar U
hlhilslem.k φ K HL W H
hlhilsplus.a + ˙ = + E
Assertion hlhilsplus φ + ˙ = + R

Proof

Step Hyp Ref Expression
1 hlhilslem.h H = LHyp K
2 hlhilslem.e E = EDRing K W
3 hlhilslem.u U = HLHil K W
4 hlhilslem.r R = Scalar U
5 hlhilslem.k φ K HL W H
6 hlhilsplus.a + ˙ = + E
7 plusgid + 𝑔 = Slot + ndx
8 starvndxnplusgndx * ndx + ndx
9 8 necomi + ndx * ndx
10 1 2 3 4 5 7 9 6 hlhilslem φ + ˙ = + R