Metamath Proof Explorer


Theorem hlhilsplusOLD

Description: Obsolete version of hlhilsplus as of 6-Nov-2024. The scalar addition for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015) (Revised by Mario Carneiro, 28-Jun-2015) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses hlhilslem.h H = LHyp K
hlhilslem.e E = EDRing K W
hlhilslem.u U = HLHil K W
hlhilslem.r R = Scalar U
hlhilslem.k φ K HL W H
hlhilsplus.a + ˙ = + E
Assertion hlhilsplusOLD φ + ˙ = + R

Proof

Step Hyp Ref Expression
1 hlhilslem.h H = LHyp K
2 hlhilslem.e E = EDRing K W
3 hlhilslem.u U = HLHil K W
4 hlhilslem.r R = Scalar U
5 hlhilslem.k φ K HL W H
6 hlhilsplus.a + ˙ = + E
7 df-plusg + 𝑔 = Slot 2
8 2nn 2
9 2lt4 2 < 4
10 1 2 3 4 5 7 8 9 6 hlhilslemOLD φ + ˙ = + R