Description: Define our final Hilbert space constructed from a Hilbert lattice. (Contributed by NM, 21-Jun-2015) (Revised by Mario Carneiro, 28-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-hlhil | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | chlh | |
|
1 | vk | |
|
2 | cvv | |
|
3 | vw | |
|
4 | clh | |
|
5 | 1 | cv | |
6 | 5 4 | cfv | |
7 | cdvh | |
|
8 | 5 7 | cfv | |
9 | 3 | cv | |
10 | 9 8 | cfv | |
11 | vu | |
|
12 | cbs | |
|
13 | 11 | cv | |
14 | 13 12 | cfv | |
15 | vv | |
|
16 | cnx | |
|
17 | 16 12 | cfv | |
18 | 15 | cv | |
19 | 17 18 | cop | |
20 | cplusg | |
|
21 | 16 20 | cfv | |
22 | 13 20 | cfv | |
23 | 21 22 | cop | |
24 | csca | |
|
25 | 16 24 | cfv | |
26 | cedring | |
|
27 | 5 26 | cfv | |
28 | 9 27 | cfv | |
29 | csts | |
|
30 | cstv | |
|
31 | 16 30 | cfv | |
32 | chg | |
|
33 | 5 32 | cfv | |
34 | 9 33 | cfv | |
35 | 31 34 | cop | |
36 | 28 35 29 | co | |
37 | 25 36 | cop | |
38 | 19 23 37 | ctp | |
39 | cvsca | |
|
40 | 16 39 | cfv | |
41 | 13 39 | cfv | |
42 | 40 41 | cop | |
43 | cip | |
|
44 | 16 43 | cfv | |
45 | vx | |
|
46 | vy | |
|
47 | chdma | |
|
48 | 5 47 | cfv | |
49 | 9 48 | cfv | |
50 | 46 | cv | |
51 | 50 49 | cfv | |
52 | 45 | cv | |
53 | 52 51 | cfv | |
54 | 45 46 18 18 53 | cmpo | |
55 | 44 54 | cop | |
56 | 42 55 | cpr | |
57 | 38 56 | cun | |
58 | 15 14 57 | csb | |
59 | 11 10 58 | csb | |
60 | 3 6 59 | cmpt | |
61 | 1 2 60 | cmpt | |
62 | 0 61 | wceq | |