Metamath Proof Explorer


Theorem hlhilslemOLD

Description: Obsolete version of hlhilslem as of 6-Nov-2024. Lemma for hlhilsbase . (Contributed by Mario Carneiro, 28-Jun-2015) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses hlhilslem.h H=LHypK
hlhilslem.e E=EDRingKW
hlhilslem.u U=HLHilKW
hlhilslem.r R=ScalarU
hlhilslem.k φKHLWH
hlhilslemOLD.f F=SlotN
hlhilslemOLD.1 N
hlhilslemOLD.2 N<4
hlhilslemOLD.c C=FE
Assertion hlhilslemOLD φC=FR

Proof

Step Hyp Ref Expression
1 hlhilslem.h H=LHypK
2 hlhilslem.e E=EDRingKW
3 hlhilslem.u U=HLHilKW
4 hlhilslem.r R=ScalarU
5 hlhilslem.k φKHLWH
6 hlhilslemOLD.f F=SlotN
7 hlhilslemOLD.1 N
8 hlhilslemOLD.2 N<4
9 hlhilslemOLD.c C=FE
10 6 7 ndxid F=SlotFndx
11 7 nnrei N
12 11 8 ltneii N4
13 6 7 ndxarg Fndx=N
14 starvndx *ndx=4
15 13 14 neeq12i Fndx*ndxN4
16 12 15 mpbir Fndx*ndx
17 10 16 setsnid FE=FEsSet*ndxHGMapKW
18 9 17 eqtri C=FEsSet*ndxHGMapKW
19 eqid HGMapKW=HGMapKW
20 eqid EsSet*ndxHGMapKW=EsSet*ndxHGMapKW
21 1 3 5 2 19 20 hlhilsca φEsSet*ndxHGMapKW=ScalarU
22 21 4 eqtr4di φEsSet*ndxHGMapKW=R
23 22 fveq2d φFEsSet*ndxHGMapKW=FR
24 18 23 eqtrid φC=FR