Description: Obsolete version of hlhilslem as of 6-Nov-2024. Lemma for hlhilsbase . (Contributed by Mario Carneiro, 28-Jun-2015) (New usage is discouraged.) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hlhilslem.h | |
|
hlhilslem.e | |
||
hlhilslem.u | |
||
hlhilslem.r | |
||
hlhilslem.k | |
||
hlhilslemOLD.f | |
||
hlhilslemOLD.1 | |
||
hlhilslemOLD.2 | |
||
hlhilslemOLD.c | |
||
Assertion | hlhilslemOLD | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlhilslem.h | |
|
2 | hlhilslem.e | |
|
3 | hlhilslem.u | |
|
4 | hlhilslem.r | |
|
5 | hlhilslem.k | |
|
6 | hlhilslemOLD.f | |
|
7 | hlhilslemOLD.1 | |
|
8 | hlhilslemOLD.2 | |
|
9 | hlhilslemOLD.c | |
|
10 | 6 7 | ndxid | |
11 | 7 | nnrei | |
12 | 11 8 | ltneii | |
13 | 6 7 | ndxarg | |
14 | starvndx | |
|
15 | 13 14 | neeq12i | |
16 | 12 15 | mpbir | |
17 | 10 16 | setsnid | |
18 | 9 17 | eqtri | |
19 | eqid | |
|
20 | eqid | |
|
21 | 1 3 5 2 19 20 | hlhilsca | |
22 | 21 4 | eqtr4di | |
23 | 22 | fveq2d | |
24 | 18 23 | eqtrid | |