Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of involution and inner product from a Hilbert lattice
hlhilsplus
Metamath Proof Explorer
Description: Scalar addition for the final constructed Hilbert space. (Contributed by NM , 22-Jun-2015) (Revised by Mario Carneiro , 28-Jun-2015)
(Revised by AV , 6-Nov-2024)
Ref
Expression
Hypotheses
hlhilslem.h
⊢ 𝐻 = ( LHyp ‘ 𝐾 )
hlhilslem.e
⊢ 𝐸 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )
hlhilslem.u
⊢ 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 )
hlhilslem.r
⊢ 𝑅 = ( Scalar ‘ 𝑈 )
hlhilslem.k
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) )
hlhilsplus.a
⊢ + = ( +g ‘ 𝐸 )
Assertion
hlhilsplus
⊢ ( 𝜑 → + = ( +g ‘ 𝑅 ) )
Proof
Step
Hyp
Ref
Expression
1
hlhilslem.h
⊢ 𝐻 = ( LHyp ‘ 𝐾 )
2
hlhilslem.e
⊢ 𝐸 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )
3
hlhilslem.u
⊢ 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 )
4
hlhilslem.r
⊢ 𝑅 = ( Scalar ‘ 𝑈 )
5
hlhilslem.k
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) )
6
hlhilsplus.a
⊢ + = ( +g ‘ 𝐸 )
7
plusgid
⊢ +g = Slot ( +g ‘ ndx )
8
starvndxnplusgndx
⊢ ( *𝑟 ‘ ndx ) ≠ ( +g ‘ ndx )
9
8
necomi
⊢ ( +g ‘ ndx ) ≠ ( *𝑟 ‘ ndx )
10
1 2 3 4 5 7 9 6
hlhilslem
⊢ ( 𝜑 → + = ( +g ‘ 𝑅 ) )