Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Norm Megill Construction of involution and inner product from a Hilbert lattice hlhilsplus  
				
		 
		
			
		 
		Description:   Scalar addition for the final constructed Hilbert space.  (Contributed by NM , 22-Jun-2015)   (Revised by Mario Carneiro , 28-Jun-2015) 
         (Revised by AV , 6-Nov-2024) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						hlhilslem.h ⊢  𝐻   =  ( LHyp ‘ 𝐾  )  
					
						hlhilslem.e ⊢  𝐸   =  ( ( EDRing ‘ 𝐾  ) ‘ 𝑊  )  
					
						hlhilslem.u ⊢  𝑈   =  ( ( HLHil ‘ 𝐾  ) ‘ 𝑊  )  
					
						hlhilslem.r ⊢  𝑅   =  ( Scalar ‘ 𝑈  )  
					
						hlhilslem.k ⊢  ( 𝜑   →  ( 𝐾   ∈  HL  ∧  𝑊   ∈  𝐻  ) )  
					
						hlhilsplus.a ⊢   +    =  ( +g  ‘ 𝐸  )  
				
					Assertion 
					hlhilsplus ⊢   ( 𝜑   →   +    =  ( +g  ‘ 𝑅  ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							hlhilslem.h ⊢  𝐻   =  ( LHyp ‘ 𝐾  )  
						
							2 
								
							 
							hlhilslem.e ⊢  𝐸   =  ( ( EDRing ‘ 𝐾  ) ‘ 𝑊  )  
						
							3 
								
							 
							hlhilslem.u ⊢  𝑈   =  ( ( HLHil ‘ 𝐾  ) ‘ 𝑊  )  
						
							4 
								
							 
							hlhilslem.r ⊢  𝑅   =  ( Scalar ‘ 𝑈  )  
						
							5 
								
							 
							hlhilslem.k ⊢  ( 𝜑   →  ( 𝐾   ∈  HL  ∧  𝑊   ∈  𝐻  ) )  
						
							6 
								
							 
							hlhilsplus.a ⊢   +    =  ( +g  ‘ 𝐸  )  
						
							7 
								
							 
							plusgid ⊢  +g   =  Slot  ( +g  ‘ ndx )  
						
							8 
								
							 
							starvndxnplusgndx ⊢  ( *𝑟  ‘ ndx )  ≠  ( +g  ‘ ndx )  
						
							9 
								8 
							 
							necomi ⊢  ( +g  ‘ ndx )  ≠  ( *𝑟  ‘ ndx )  
						
							10 
								1  2  3  4  5  7  9  6 
							 
							hlhilslem ⊢  ( 𝜑   →   +    =  ( +g  ‘ 𝑅  ) )