Step |
Hyp |
Ref |
Expression |
1 |
|
hlhilsbase.h |
|- H = ( LHyp ` K ) |
2 |
|
hlhilsbase.l |
|- L = ( ( DVecH ` K ) ` W ) |
3 |
|
hlhilsbase.s |
|- S = ( Scalar ` L ) |
4 |
|
hlhilsbase.u |
|- U = ( ( HLHil ` K ) ` W ) |
5 |
|
hlhilsbase.r |
|- R = ( Scalar ` U ) |
6 |
|
hlhilsbase.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
7 |
|
hlhilsmul2.m |
|- .x. = ( .r ` S ) |
8 |
|
eqid |
|- ( ( EDRing ` K ) ` W ) = ( ( EDRing ` K ) ` W ) |
9 |
1 8 2 3
|
dvhsca |
|- ( ( K e. HL /\ W e. H ) -> S = ( ( EDRing ` K ) ` W ) ) |
10 |
6 9
|
syl |
|- ( ph -> S = ( ( EDRing ` K ) ` W ) ) |
11 |
10
|
fveq2d |
|- ( ph -> ( .r ` S ) = ( .r ` ( ( EDRing ` K ) ` W ) ) ) |
12 |
7 11
|
syl5eq |
|- ( ph -> .x. = ( .r ` ( ( EDRing ` K ) ` W ) ) ) |
13 |
|
eqid |
|- ( .r ` ( ( EDRing ` K ) ` W ) ) = ( .r ` ( ( EDRing ` K ) ` W ) ) |
14 |
1 8 4 5 6 13
|
hlhilsmul |
|- ( ph -> ( .r ` ( ( EDRing ` K ) ` W ) ) = ( .r ` R ) ) |
15 |
12 14
|
eqtrd |
|- ( ph -> .x. = ( .r ` R ) ) |