| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hlhilsbase.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hlhilsbase.l |
|- L = ( ( DVecH ` K ) ` W ) |
| 3 |
|
hlhilsbase.s |
|- S = ( Scalar ` L ) |
| 4 |
|
hlhilsbase.u |
|- U = ( ( HLHil ` K ) ` W ) |
| 5 |
|
hlhilsbase.r |
|- R = ( Scalar ` U ) |
| 6 |
|
hlhilsbase.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 7 |
|
hlhilsmul2.m |
|- .x. = ( .r ` S ) |
| 8 |
|
eqid |
|- ( ( EDRing ` K ) ` W ) = ( ( EDRing ` K ) ` W ) |
| 9 |
1 8 2 3
|
dvhsca |
|- ( ( K e. HL /\ W e. H ) -> S = ( ( EDRing ` K ) ` W ) ) |
| 10 |
6 9
|
syl |
|- ( ph -> S = ( ( EDRing ` K ) ` W ) ) |
| 11 |
10
|
fveq2d |
|- ( ph -> ( .r ` S ) = ( .r ` ( ( EDRing ` K ) ` W ) ) ) |
| 12 |
7 11
|
eqtrid |
|- ( ph -> .x. = ( .r ` ( ( EDRing ` K ) ` W ) ) ) |
| 13 |
|
eqid |
|- ( .r ` ( ( EDRing ` K ) ` W ) ) = ( .r ` ( ( EDRing ` K ) ` W ) ) |
| 14 |
1 8 4 5 6 13
|
hlhilsmul |
|- ( ph -> ( .r ` ( ( EDRing ` K ) ` W ) ) = ( .r ` R ) ) |
| 15 |
12 14
|
eqtrd |
|- ( ph -> .x. = ( .r ` R ) ) |