Metamath Proof Explorer


Theorem hlhilsmul2

Description: Scalar multiplication for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015) (Revised by Mario Carneiro, 28-Jun-2015)

Ref Expression
Hypotheses hlhilsbase.h 𝐻 = ( LHyp ‘ 𝐾 )
hlhilsbase.l 𝐿 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hlhilsbase.s 𝑆 = ( Scalar ‘ 𝐿 )
hlhilsbase.u 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 )
hlhilsbase.r 𝑅 = ( Scalar ‘ 𝑈 )
hlhilsbase.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hlhilsmul2.m · = ( .r𝑆 )
Assertion hlhilsmul2 ( 𝜑· = ( .r𝑅 ) )

Proof

Step Hyp Ref Expression
1 hlhilsbase.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hlhilsbase.l 𝐿 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hlhilsbase.s 𝑆 = ( Scalar ‘ 𝐿 )
4 hlhilsbase.u 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 )
5 hlhilsbase.r 𝑅 = ( Scalar ‘ 𝑈 )
6 hlhilsbase.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
7 hlhilsmul2.m · = ( .r𝑆 )
8 eqid ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )
9 1 8 2 3 dvhsca ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝑆 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) )
10 6 9 syl ( 𝜑𝑆 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) )
11 10 fveq2d ( 𝜑 → ( .r𝑆 ) = ( .r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) )
12 7 11 syl5eq ( 𝜑· = ( .r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) )
13 eqid ( .r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( .r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) )
14 1 8 4 5 6 13 hlhilsmul ( 𝜑 → ( .r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( .r𝑅 ) )
15 12 14 eqtrd ( 𝜑· = ( .r𝑅 ) )