Step |
Hyp |
Ref |
Expression |
1 |
|
hlhilsbase.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hlhilsbase.l |
⊢ 𝐿 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hlhilsbase.s |
⊢ 𝑆 = ( Scalar ‘ 𝐿 ) |
4 |
|
hlhilsbase.u |
⊢ 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
hlhilsbase.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
6 |
|
hlhilsbase.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
7 |
|
hlhilsmul2.m |
⊢ · = ( .r ‘ 𝑆 ) |
8 |
|
eqid |
⊢ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
1 8 2 3
|
dvhsca |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑆 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) |
10 |
6 9
|
syl |
⊢ ( 𝜑 → 𝑆 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) |
11 |
10
|
fveq2d |
⊢ ( 𝜑 → ( .r ‘ 𝑆 ) = ( .r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
12 |
7 11
|
syl5eq |
⊢ ( 𝜑 → · = ( .r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
13 |
|
eqid |
⊢ ( .r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( .r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) |
14 |
1 8 4 5 6 13
|
hlhilsmul |
⊢ ( 𝜑 → ( .r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( .r ‘ 𝑅 ) ) |
15 |
12 14
|
eqtrd |
⊢ ( 𝜑 → · = ( .r ‘ 𝑅 ) ) |