| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hlhilsbase.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hlhilsbase.l | ⊢ 𝐿  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hlhilsbase.s | ⊢ 𝑆  =  ( Scalar ‘ 𝐿 ) | 
						
							| 4 |  | hlhilsbase.u | ⊢ 𝑈  =  ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | hlhilsbase.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 6 |  | hlhilsbase.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 7 |  | hlhils0.z | ⊢  0   =  ( 0g ‘ 𝑆 ) | 
						
							| 8 |  | eqidd | ⊢ ( 𝜑  →  ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 10 | 1 2 3 4 5 6 9 | hlhilsbase2 | ⊢ ( 𝜑  →  ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑅 ) ) | 
						
							| 11 |  | eqid | ⊢ ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑆 ) | 
						
							| 12 | 1 2 3 4 5 6 11 | hlhilsplus2 | ⊢ ( 𝜑  →  ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑅 ) ) | 
						
							| 13 | 12 | oveqdr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) ) )  →  ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ) | 
						
							| 14 | 8 10 13 | grpidpropd | ⊢ ( 𝜑  →  ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 15 | 7 14 | eqtrid | ⊢ ( 𝜑  →   0   =  ( 0g ‘ 𝑅 ) ) |