Metamath Proof Explorer


Theorem hlhils0

Description: The scalar ring zero for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015) (Revised by Mario Carneiro, 29-Jun-2015)

Ref Expression
Hypotheses hlhilsbase.h 𝐻 = ( LHyp ‘ 𝐾 )
hlhilsbase.l 𝐿 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hlhilsbase.s 𝑆 = ( Scalar ‘ 𝐿 )
hlhilsbase.u 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 )
hlhilsbase.r 𝑅 = ( Scalar ‘ 𝑈 )
hlhilsbase.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hlhils0.z 0 = ( 0g𝑆 )
Assertion hlhils0 ( 𝜑0 = ( 0g𝑅 ) )

Proof

Step Hyp Ref Expression
1 hlhilsbase.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hlhilsbase.l 𝐿 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hlhilsbase.s 𝑆 = ( Scalar ‘ 𝐿 )
4 hlhilsbase.u 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 )
5 hlhilsbase.r 𝑅 = ( Scalar ‘ 𝑈 )
6 hlhilsbase.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
7 hlhils0.z 0 = ( 0g𝑆 )
8 eqidd ( 𝜑 → ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) )
9 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
10 1 2 3 4 5 6 9 hlhilsbase2 ( 𝜑 → ( Base ‘ 𝑆 ) = ( Base ‘ 𝑅 ) )
11 eqid ( +g𝑆 ) = ( +g𝑆 )
12 1 2 3 4 5 6 11 hlhilsplus2 ( 𝜑 → ( +g𝑆 ) = ( +g𝑅 ) )
13 12 oveqdr ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( +g𝑆 ) 𝑦 ) = ( 𝑥 ( +g𝑅 ) 𝑦 ) )
14 8 10 13 grpidpropd ( 𝜑 → ( 0g𝑆 ) = ( 0g𝑅 ) )
15 7 14 syl5eq ( 𝜑0 = ( 0g𝑅 ) )