Metamath Proof Explorer


Theorem hlhils0

Description: The scalar ring zero for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015) (Revised by Mario Carneiro, 29-Jun-2015)

Ref Expression
Hypotheses hlhilsbase.h H=LHypK
hlhilsbase.l L=DVecHKW
hlhilsbase.s S=ScalarL
hlhilsbase.u U=HLHilKW
hlhilsbase.r R=ScalarU
hlhilsbase.k φKHLWH
hlhils0.z 0˙=0S
Assertion hlhils0 φ0˙=0R

Proof

Step Hyp Ref Expression
1 hlhilsbase.h H=LHypK
2 hlhilsbase.l L=DVecHKW
3 hlhilsbase.s S=ScalarL
4 hlhilsbase.u U=HLHilKW
5 hlhilsbase.r R=ScalarU
6 hlhilsbase.k φKHLWH
7 hlhils0.z 0˙=0S
8 eqidd φBaseS=BaseS
9 eqid BaseS=BaseS
10 1 2 3 4 5 6 9 hlhilsbase2 φBaseS=BaseR
11 eqid +S=+S
12 1 2 3 4 5 6 11 hlhilsplus2 φ+S=+R
13 12 oveqdr φxBaseSyBaseSx+Sy=x+Ry
14 8 10 13 grpidpropd φ0S=0R
15 7 14 eqtrid φ0˙=0R