Metamath Proof Explorer


Theorem hlhils0

Description: The scalar ring zero for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015) (Revised by Mario Carneiro, 29-Jun-2015)

Ref Expression
Hypotheses hlhilsbase.h
|- H = ( LHyp ` K )
hlhilsbase.l
|- L = ( ( DVecH ` K ) ` W )
hlhilsbase.s
|- S = ( Scalar ` L )
hlhilsbase.u
|- U = ( ( HLHil ` K ) ` W )
hlhilsbase.r
|- R = ( Scalar ` U )
hlhilsbase.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hlhils0.z
|- .0. = ( 0g ` S )
Assertion hlhils0
|- ( ph -> .0. = ( 0g ` R ) )

Proof

Step Hyp Ref Expression
1 hlhilsbase.h
 |-  H = ( LHyp ` K )
2 hlhilsbase.l
 |-  L = ( ( DVecH ` K ) ` W )
3 hlhilsbase.s
 |-  S = ( Scalar ` L )
4 hlhilsbase.u
 |-  U = ( ( HLHil ` K ) ` W )
5 hlhilsbase.r
 |-  R = ( Scalar ` U )
6 hlhilsbase.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
7 hlhils0.z
 |-  .0. = ( 0g ` S )
8 eqidd
 |-  ( ph -> ( Base ` S ) = ( Base ` S ) )
9 eqid
 |-  ( Base ` S ) = ( Base ` S )
10 1 2 3 4 5 6 9 hlhilsbase2
 |-  ( ph -> ( Base ` S ) = ( Base ` R ) )
11 eqid
 |-  ( +g ` S ) = ( +g ` S )
12 1 2 3 4 5 6 11 hlhilsplus2
 |-  ( ph -> ( +g ` S ) = ( +g ` R ) )
13 12 oveqdr
 |-  ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( x ( +g ` S ) y ) = ( x ( +g ` R ) y ) )
14 8 10 13 grpidpropd
 |-  ( ph -> ( 0g ` S ) = ( 0g ` R ) )
15 7 14 syl5eq
 |-  ( ph -> .0. = ( 0g ` R ) )