| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hlhilsbase.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hlhilsbase.l |
|- L = ( ( DVecH ` K ) ` W ) |
| 3 |
|
hlhilsbase.s |
|- S = ( Scalar ` L ) |
| 4 |
|
hlhilsbase.u |
|- U = ( ( HLHil ` K ) ` W ) |
| 5 |
|
hlhilsbase.r |
|- R = ( Scalar ` U ) |
| 6 |
|
hlhilsbase.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 7 |
|
hlhils1.t |
|- .1. = ( 1r ` S ) |
| 8 |
|
eqidd |
|- ( ph -> ( Base ` S ) = ( Base ` S ) ) |
| 9 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 10 |
1 2 3 4 5 6 9
|
hlhilsbase2 |
|- ( ph -> ( Base ` S ) = ( Base ` R ) ) |
| 11 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
| 12 |
1 2 3 4 5 6 11
|
hlhilsmul2 |
|- ( ph -> ( .r ` S ) = ( .r ` R ) ) |
| 13 |
12
|
oveqdr |
|- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( x ( .r ` S ) y ) = ( x ( .r ` R ) y ) ) |
| 14 |
8 10 13
|
rngidpropd |
|- ( ph -> ( 1r ` S ) = ( 1r ` R ) ) |
| 15 |
7 14
|
eqtrid |
|- ( ph -> .1. = ( 1r ` R ) ) |