| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hlhilsbase.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hlhilsbase.l |  |-  L = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hlhilsbase.s |  |-  S = ( Scalar ` L ) | 
						
							| 4 |  | hlhilsbase.u |  |-  U = ( ( HLHil ` K ) ` W ) | 
						
							| 5 |  | hlhilsbase.r |  |-  R = ( Scalar ` U ) | 
						
							| 6 |  | hlhilsbase.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 7 |  | hlhils1.t |  |-  .1. = ( 1r ` S ) | 
						
							| 8 |  | eqidd |  |-  ( ph -> ( Base ` S ) = ( Base ` S ) ) | 
						
							| 9 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 10 | 1 2 3 4 5 6 9 | hlhilsbase2 |  |-  ( ph -> ( Base ` S ) = ( Base ` R ) ) | 
						
							| 11 |  | eqid |  |-  ( .r ` S ) = ( .r ` S ) | 
						
							| 12 | 1 2 3 4 5 6 11 | hlhilsmul2 |  |-  ( ph -> ( .r ` S ) = ( .r ` R ) ) | 
						
							| 13 | 12 | oveqdr |  |-  ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( x ( .r ` S ) y ) = ( x ( .r ` R ) y ) ) | 
						
							| 14 | 8 10 13 | rngidpropd |  |-  ( ph -> ( 1r ` S ) = ( 1r ` R ) ) | 
						
							| 15 | 7 14 | eqtrid |  |-  ( ph -> .1. = ( 1r ` R ) ) |