| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hlhilvsca.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hlhilvsca.l |  |-  L = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hlhilvsca.t |  |-  .x. = ( .s ` L ) | 
						
							| 4 |  | hlhilvsca.u |  |-  U = ( ( HLHil ` K ) ` W ) | 
						
							| 5 |  | hlhilvsca.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 6 | 3 | fvexi |  |-  .x. e. _V | 
						
							| 7 |  | eqid |  |-  ( { <. ( Base ` ndx ) , ( Base ` L ) >. , <. ( +g ` ndx ) , ( +g ` L ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` K ) ` W ) sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ( x e. ( Base ` L ) , y e. ( Base ` L ) |-> ( ( ( ( HDMap ` K ) ` W ) ` y ) ` x ) ) >. } ) = ( { <. ( Base ` ndx ) , ( Base ` L ) >. , <. ( +g ` ndx ) , ( +g ` L ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` K ) ` W ) sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ( x e. ( Base ` L ) , y e. ( Base ` L ) |-> ( ( ( ( HDMap ` K ) ` W ) ` y ) ` x ) ) >. } ) | 
						
							| 8 | 7 | phlvsca |  |-  ( .x. e. _V -> .x. = ( .s ` ( { <. ( Base ` ndx ) , ( Base ` L ) >. , <. ( +g ` ndx ) , ( +g ` L ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` K ) ` W ) sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ( x e. ( Base ` L ) , y e. ( Base ` L ) |-> ( ( ( ( HDMap ` K ) ` W ) ` y ) ` x ) ) >. } ) ) ) | 
						
							| 9 | 6 8 | ax-mp |  |-  .x. = ( .s ` ( { <. ( Base ` ndx ) , ( Base ` L ) >. , <. ( +g ` ndx ) , ( +g ` L ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` K ) ` W ) sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ( x e. ( Base ` L ) , y e. ( Base ` L ) |-> ( ( ( ( HDMap ` K ) ` W ) ` y ) ` x ) ) >. } ) ) | 
						
							| 10 |  | eqid |  |-  ( Base ` L ) = ( Base ` L ) | 
						
							| 11 |  | eqid |  |-  ( +g ` L ) = ( +g ` L ) | 
						
							| 12 |  | eqid |  |-  ( ( EDRing ` K ) ` W ) = ( ( EDRing ` K ) ` W ) | 
						
							| 13 |  | eqid |  |-  ( ( HGMap ` K ) ` W ) = ( ( HGMap ` K ) ` W ) | 
						
							| 14 |  | eqid |  |-  ( ( ( EDRing ` K ) ` W ) sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) = ( ( ( EDRing ` K ) ` W ) sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) | 
						
							| 15 |  | eqid |  |-  ( ( HDMap ` K ) ` W ) = ( ( HDMap ` K ) ` W ) | 
						
							| 16 |  | eqid |  |-  ( x e. ( Base ` L ) , y e. ( Base ` L ) |-> ( ( ( ( HDMap ` K ) ` W ) ` y ) ` x ) ) = ( x e. ( Base ` L ) , y e. ( Base ` L ) |-> ( ( ( ( HDMap ` K ) ` W ) ` y ) ` x ) ) | 
						
							| 17 | 1 4 2 10 11 12 13 14 3 15 16 5 | hlhilset |  |-  ( ph -> U = ( { <. ( Base ` ndx ) , ( Base ` L ) >. , <. ( +g ` ndx ) , ( +g ` L ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` K ) ` W ) sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ( x e. ( Base ` L ) , y e. ( Base ` L ) |-> ( ( ( ( HDMap ` K ) ` W ) ` y ) ` x ) ) >. } ) ) | 
						
							| 18 | 17 | fveq2d |  |-  ( ph -> ( .s ` U ) = ( .s ` ( { <. ( Base ` ndx ) , ( Base ` L ) >. , <. ( +g ` ndx ) , ( +g ` L ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` K ) ` W ) sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ( x e. ( Base ` L ) , y e. ( Base ` L ) |-> ( ( ( ( HDMap ` K ) ` W ) ` y ) ` x ) ) >. } ) ) ) | 
						
							| 19 | 9 18 | eqtr4id |  |-  ( ph -> .x. = ( .s ` U ) ) |