Metamath Proof Explorer


Theorem hlhilvsca

Description: The scalar product for the final constructed Hilbert space. (Contributed by NM, 21-Jun-2015) (Revised by Mario Carneiro, 28-Jun-2015)

Ref Expression
Hypotheses hlhilvsca.h H = LHyp K
hlhilvsca.l L = DVecH K W
hlhilvsca.t · ˙ = L
hlhilvsca.u U = HLHil K W
hlhilvsca.k φ K HL W H
Assertion hlhilvsca φ · ˙ = U

Proof

Step Hyp Ref Expression
1 hlhilvsca.h H = LHyp K
2 hlhilvsca.l L = DVecH K W
3 hlhilvsca.t · ˙ = L
4 hlhilvsca.u U = HLHil K W
5 hlhilvsca.k φ K HL W H
6 3 fvexi · ˙ V
7 eqid Base ndx Base L + ndx + L Scalar ndx EDRing K W sSet * ndx HGMap K W ndx · ˙ 𝑖 ndx x Base L , y Base L HDMap K W y x = Base ndx Base L + ndx + L Scalar ndx EDRing K W sSet * ndx HGMap K W ndx · ˙ 𝑖 ndx x Base L , y Base L HDMap K W y x
8 7 phlvsca · ˙ V · ˙ = Base ndx Base L + ndx + L Scalar ndx EDRing K W sSet * ndx HGMap K W ndx · ˙ 𝑖 ndx x Base L , y Base L HDMap K W y x
9 6 8 ax-mp · ˙ = Base ndx Base L + ndx + L Scalar ndx EDRing K W sSet * ndx HGMap K W ndx · ˙ 𝑖 ndx x Base L , y Base L HDMap K W y x
10 eqid Base L = Base L
11 eqid + L = + L
12 eqid EDRing K W = EDRing K W
13 eqid HGMap K W = HGMap K W
14 eqid EDRing K W sSet * ndx HGMap K W = EDRing K W sSet * ndx HGMap K W
15 eqid HDMap K W = HDMap K W
16 eqid x Base L , y Base L HDMap K W y x = x Base L , y Base L HDMap K W y x
17 1 4 2 10 11 12 13 14 3 15 16 5 hlhilset φ U = Base ndx Base L + ndx + L Scalar ndx EDRing K W sSet * ndx HGMap K W ndx · ˙ 𝑖 ndx x Base L , y Base L HDMap K W y x
18 17 fveq2d φ U = Base ndx Base L + ndx + L Scalar ndx EDRing K W sSet * ndx HGMap K W ndx · ˙ 𝑖 ndx x Base L , y Base L HDMap K W y x
19 9 18 eqtr4id φ · ˙ = U