Metamath Proof Explorer


Theorem hlhilip

Description: Inner product operation for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015) (Revised by Mario Carneiro, 28-Jun-2015)

Ref Expression
Hypotheses hlhilip.h H = LHyp K
hlhilip.l L = DVecH K W
hlhilip.v V = Base L
hlhilip.s S = HDMap K W
hlhilip.u U = HLHil K W
hlhilip.k φ K HL W H
hlhilip.p , ˙ = x V , y V S y x
Assertion hlhilip φ , ˙ = 𝑖 U

Proof

Step Hyp Ref Expression
1 hlhilip.h H = LHyp K
2 hlhilip.l L = DVecH K W
3 hlhilip.v V = Base L
4 hlhilip.s S = HDMap K W
5 hlhilip.u U = HLHil K W
6 hlhilip.k φ K HL W H
7 hlhilip.p , ˙ = x V , y V S y x
8 3 fvexi V V
9 8 8 mpoex x V , y V S y x V
10 7 9 eqeltri , ˙ V
11 eqid Base ndx V + ndx + L Scalar ndx EDRing K W sSet * ndx HGMap K W ndx L 𝑖 ndx , ˙ = Base ndx V + ndx + L Scalar ndx EDRing K W sSet * ndx HGMap K W ndx L 𝑖 ndx , ˙
12 11 phlip , ˙ V , ˙ = 𝑖 Base ndx V + ndx + L Scalar ndx EDRing K W sSet * ndx HGMap K W ndx L 𝑖 ndx , ˙
13 10 12 ax-mp , ˙ = 𝑖 Base ndx V + ndx + L Scalar ndx EDRing K W sSet * ndx HGMap K W ndx L 𝑖 ndx , ˙
14 eqid + L = + L
15 eqid EDRing K W = EDRing K W
16 eqid HGMap K W = HGMap K W
17 eqid EDRing K W sSet * ndx HGMap K W = EDRing K W sSet * ndx HGMap K W
18 eqid L = L
19 1 5 2 3 14 15 16 17 18 4 7 6 hlhilset φ U = Base ndx V + ndx + L Scalar ndx EDRing K W sSet * ndx HGMap K W ndx L 𝑖 ndx , ˙
20 19 fveq2d φ 𝑖 U = 𝑖 Base ndx V + ndx + L Scalar ndx EDRing K W sSet * ndx HGMap K W ndx L 𝑖 ndx , ˙
21 13 20 eqtr4id φ , ˙ = 𝑖 U