Metamath Proof Explorer


Theorem hlhilip

Description: Inner product operation for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015) (Revised by Mario Carneiro, 28-Jun-2015)

Ref Expression
Hypotheses hlhilip.h H=LHypK
hlhilip.l L=DVecHKW
hlhilip.v V=BaseL
hlhilip.s S=HDMapKW
hlhilip.u U=HLHilKW
hlhilip.k φKHLWH
hlhilip.p ,˙=xV,yVSyx
Assertion hlhilip φ,˙=𝑖U

Proof

Step Hyp Ref Expression
1 hlhilip.h H=LHypK
2 hlhilip.l L=DVecHKW
3 hlhilip.v V=BaseL
4 hlhilip.s S=HDMapKW
5 hlhilip.u U=HLHilKW
6 hlhilip.k φKHLWH
7 hlhilip.p ,˙=xV,yVSyx
8 3 fvexi VV
9 8 8 mpoex xV,yVSyxV
10 7 9 eqeltri ,˙V
11 eqid BasendxV+ndx+LScalarndxEDRingKWsSet*ndxHGMapKWndxL𝑖ndx,˙=BasendxV+ndx+LScalarndxEDRingKWsSet*ndxHGMapKWndxL𝑖ndx,˙
12 11 phlip ,˙V,˙=𝑖BasendxV+ndx+LScalarndxEDRingKWsSet*ndxHGMapKWndxL𝑖ndx,˙
13 10 12 ax-mp ,˙=𝑖BasendxV+ndx+LScalarndxEDRingKWsSet*ndxHGMapKWndxL𝑖ndx,˙
14 eqid +L=+L
15 eqid EDRingKW=EDRingKW
16 eqid HGMapKW=HGMapKW
17 eqid EDRingKWsSet*ndxHGMapKW=EDRingKWsSet*ndxHGMapKW
18 eqid L=L
19 1 5 2 3 14 15 16 17 18 4 7 6 hlhilset φU=BasendxV+ndx+LScalarndxEDRingKWsSet*ndxHGMapKWndxL𝑖ndx,˙
20 19 fveq2d φ𝑖U=𝑖BasendxV+ndx+LScalarndxEDRingKWsSet*ndxHGMapKWndxL𝑖ndx,˙
21 13 20 eqtr4id φ,˙=𝑖U