| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hlhilip.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hlhilip.l |  |-  L = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hlhilip.v |  |-  V = ( Base ` L ) | 
						
							| 4 |  | hlhilip.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 5 |  | hlhilip.u |  |-  U = ( ( HLHil ` K ) ` W ) | 
						
							| 6 |  | hlhilip.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 7 |  | hlhilip.p |  |-  ., = ( x e. V , y e. V |-> ( ( S ` y ) ` x ) ) | 
						
							| 8 | 3 | fvexi |  |-  V e. _V | 
						
							| 9 | 8 8 | mpoex |  |-  ( x e. V , y e. V |-> ( ( S ` y ) ` x ) ) e. _V | 
						
							| 10 | 7 9 | eqeltri |  |-  ., e. _V | 
						
							| 11 |  | eqid |  |-  ( { <. ( Base ` ndx ) , V >. , <. ( +g ` ndx ) , ( +g ` L ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` K ) ` W ) sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` L ) >. , <. ( .i ` ndx ) , ., >. } ) = ( { <. ( Base ` ndx ) , V >. , <. ( +g ` ndx ) , ( +g ` L ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` K ) ` W ) sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` L ) >. , <. ( .i ` ndx ) , ., >. } ) | 
						
							| 12 | 11 | phlip |  |-  ( ., e. _V -> ., = ( .i ` ( { <. ( Base ` ndx ) , V >. , <. ( +g ` ndx ) , ( +g ` L ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` K ) ` W ) sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` L ) >. , <. ( .i ` ndx ) , ., >. } ) ) ) | 
						
							| 13 | 10 12 | ax-mp |  |-  ., = ( .i ` ( { <. ( Base ` ndx ) , V >. , <. ( +g ` ndx ) , ( +g ` L ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` K ) ` W ) sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` L ) >. , <. ( .i ` ndx ) , ., >. } ) ) | 
						
							| 14 |  | eqid |  |-  ( +g ` L ) = ( +g ` L ) | 
						
							| 15 |  | eqid |  |-  ( ( EDRing ` K ) ` W ) = ( ( EDRing ` K ) ` W ) | 
						
							| 16 |  | eqid |  |-  ( ( HGMap ` K ) ` W ) = ( ( HGMap ` K ) ` W ) | 
						
							| 17 |  | eqid |  |-  ( ( ( EDRing ` K ) ` W ) sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) = ( ( ( EDRing ` K ) ` W ) sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) | 
						
							| 18 |  | eqid |  |-  ( .s ` L ) = ( .s ` L ) | 
						
							| 19 | 1 5 2 3 14 15 16 17 18 4 7 6 | hlhilset |  |-  ( ph -> U = ( { <. ( Base ` ndx ) , V >. , <. ( +g ` ndx ) , ( +g ` L ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` K ) ` W ) sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` L ) >. , <. ( .i ` ndx ) , ., >. } ) ) | 
						
							| 20 | 19 | fveq2d |  |-  ( ph -> ( .i ` U ) = ( .i ` ( { <. ( Base ` ndx ) , V >. , <. ( +g ` ndx ) , ( +g ` L ) >. , <. ( Scalar ` ndx ) , ( ( ( EDRing ` K ) ` W ) sSet <. ( *r ` ndx ) , ( ( HGMap ` K ) ` W ) >. ) >. } u. { <. ( .s ` ndx ) , ( .s ` L ) >. , <. ( .i ` ndx ) , ., >. } ) ) ) | 
						
							| 21 | 13 20 | eqtr4id |  |-  ( ph -> ., = ( .i ` U ) ) |