| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hlhilip.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hlhilip.l | ⊢ 𝐿  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hlhilip.v | ⊢ 𝑉  =  ( Base ‘ 𝐿 ) | 
						
							| 4 |  | hlhilip.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | hlhilip.u | ⊢ 𝑈  =  ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | hlhilip.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 7 |  | hlhilip.p | ⊢  ,   =  ( 𝑥  ∈  𝑉 ,  𝑦  ∈  𝑉  ↦  ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑥 ) ) | 
						
							| 8 | 3 | fvexi | ⊢ 𝑉  ∈  V | 
						
							| 9 | 8 8 | mpoex | ⊢ ( 𝑥  ∈  𝑉 ,  𝑦  ∈  𝑉  ↦  ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑥 ) )  ∈  V | 
						
							| 10 | 7 9 | eqeltri | ⊢  ,   ∈  V | 
						
							| 11 |  | eqid | ⊢ ( { 〈 ( Base ‘ ndx ) ,  𝑉 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ 𝐿 ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  (  ·𝑠  ‘ 𝐿 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,   ,  〉 } )  =  ( { 〈 ( Base ‘ ndx ) ,  𝑉 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ 𝐿 ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  (  ·𝑠  ‘ 𝐿 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,   ,  〉 } ) | 
						
							| 12 | 11 | phlip | ⊢ (  ,   ∈  V  →   ,   =  ( ·𝑖 ‘ ( { 〈 ( Base ‘ ndx ) ,  𝑉 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ 𝐿 ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  (  ·𝑠  ‘ 𝐿 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,   ,  〉 } ) ) ) | 
						
							| 13 | 10 12 | ax-mp | ⊢  ,   =  ( ·𝑖 ‘ ( { 〈 ( Base ‘ ndx ) ,  𝑉 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ 𝐿 ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  (  ·𝑠  ‘ 𝐿 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,   ,  〉 } ) ) | 
						
							| 14 |  | eqid | ⊢ ( +g ‘ 𝐿 )  =  ( +g ‘ 𝐿 ) | 
						
							| 15 |  | eqid | ⊢ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 16 |  | eqid | ⊢ ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 17 |  | eqid | ⊢ ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 )  =  ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) | 
						
							| 18 |  | eqid | ⊢ (  ·𝑠  ‘ 𝐿 )  =  (  ·𝑠  ‘ 𝐿 ) | 
						
							| 19 | 1 5 2 3 14 15 16 17 18 4 7 6 | hlhilset | ⊢ ( 𝜑  →  𝑈  =  ( { 〈 ( Base ‘ ndx ) ,  𝑉 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ 𝐿 ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  (  ·𝑠  ‘ 𝐿 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,   ,  〉 } ) ) | 
						
							| 20 | 19 | fveq2d | ⊢ ( 𝜑  →  ( ·𝑖 ‘ 𝑈 )  =  ( ·𝑖 ‘ ( { 〈 ( Base ‘ ndx ) ,  𝑉 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ 𝐿 ) 〉 ,  〈 ( Scalar ‘ ndx ) ,  ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )  sSet  〈 ( *𝑟 ‘ ndx ) ,  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) 〉 }  ∪  { 〈 (  ·𝑠  ‘ ndx ) ,  (  ·𝑠  ‘ 𝐿 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,   ,  〉 } ) ) ) | 
						
							| 21 | 13 20 | eqtr4id | ⊢ ( 𝜑  →   ,   =  ( ·𝑖 ‘ 𝑈 ) ) |