Metamath Proof Explorer


Theorem hlhilip

Description: Inner product operation for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015) (Revised by Mario Carneiro, 28-Jun-2015)

Ref Expression
Hypotheses hlhilip.h 𝐻 = ( LHyp ‘ 𝐾 )
hlhilip.l 𝐿 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hlhilip.v 𝑉 = ( Base ‘ 𝐿 )
hlhilip.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hlhilip.u 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 )
hlhilip.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hlhilip.p , = ( 𝑥𝑉 , 𝑦𝑉 ↦ ( ( 𝑆𝑦 ) ‘ 𝑥 ) )
Assertion hlhilip ( 𝜑, = ( ·𝑖𝑈 ) )

Proof

Step Hyp Ref Expression
1 hlhilip.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hlhilip.l 𝐿 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hlhilip.v 𝑉 = ( Base ‘ 𝐿 )
4 hlhilip.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
5 hlhilip.u 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 )
6 hlhilip.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
7 hlhilip.p , = ( 𝑥𝑉 , 𝑦𝑉 ↦ ( ( 𝑆𝑦 ) ‘ 𝑥 ) )
8 3 fvexi 𝑉 ∈ V
9 8 8 mpoex ( 𝑥𝑉 , 𝑦𝑉 ↦ ( ( 𝑆𝑦 ) ‘ 𝑥 ) ) ∈ V
10 7 9 eqeltri , ∈ V
11 eqid ( { ⟨ ( Base ‘ ndx ) , 𝑉 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝐿 ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( ·𝑠𝐿 ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , , ⟩ } ) = ( { ⟨ ( Base ‘ ndx ) , 𝑉 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝐿 ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( ·𝑠𝐿 ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , , ⟩ } )
12 11 phlip ( , ∈ V → , = ( ·𝑖 ‘ ( { ⟨ ( Base ‘ ndx ) , 𝑉 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝐿 ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( ·𝑠𝐿 ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , , ⟩ } ) ) )
13 10 12 ax-mp , = ( ·𝑖 ‘ ( { ⟨ ( Base ‘ ndx ) , 𝑉 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝐿 ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( ·𝑠𝐿 ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , , ⟩ } ) )
14 eqid ( +g𝐿 ) = ( +g𝐿 )
15 eqid ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )
16 eqid ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 )
17 eqid ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) = ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ )
18 eqid ( ·𝑠𝐿 ) = ( ·𝑠𝐿 )
19 1 5 2 3 14 15 16 17 18 4 7 6 hlhilset ( 𝜑𝑈 = ( { ⟨ ( Base ‘ ndx ) , 𝑉 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝐿 ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( ·𝑠𝐿 ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , , ⟩ } ) )
20 19 fveq2d ( 𝜑 → ( ·𝑖𝑈 ) = ( ·𝑖 ‘ ( { ⟨ ( Base ‘ ndx ) , 𝑉 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝐿 ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( ·𝑠𝐿 ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , , ⟩ } ) ) )
21 13 20 eqtr4id ( 𝜑, = ( ·𝑖𝑈 ) )