Step |
Hyp |
Ref |
Expression |
1 |
|
hlhilip.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hlhilip.l |
⊢ 𝐿 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hlhilip.v |
⊢ 𝑉 = ( Base ‘ 𝐿 ) |
4 |
|
hlhilip.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
hlhilip.u |
⊢ 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
hlhilip.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
7 |
|
hlhilip.i |
⊢ , = ( ·𝑖 ‘ 𝑈 ) |
8 |
|
hlhilip.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
9 |
|
hlhilip.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
10 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑉 , 𝑦 ∈ 𝑉 ↦ ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑉 , 𝑦 ∈ 𝑉 ↦ ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑥 ) ) |
11 |
1 2 3 4 5 6 10
|
hlhilip |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 , 𝑦 ∈ 𝑉 ↦ ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑥 ) ) = ( ·𝑖 ‘ 𝑈 ) ) |
12 |
7 11
|
eqtr4id |
⊢ ( 𝜑 → , = ( 𝑥 ∈ 𝑉 , 𝑦 ∈ 𝑉 ↦ ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑥 ) ) ) |
13 |
12
|
oveqd |
⊢ ( 𝜑 → ( 𝑋 , 𝑌 ) = ( 𝑋 ( 𝑥 ∈ 𝑉 , 𝑦 ∈ 𝑉 ↦ ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑥 ) ) 𝑌 ) ) |
14 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑥 ) = ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑋 ) ) |
15 |
|
fveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑆 ‘ 𝑦 ) = ( 𝑆 ‘ 𝑌 ) ) |
16 |
15
|
fveq1d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑋 ) = ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) ) |
17 |
|
fvex |
⊢ ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) ∈ V |
18 |
14 16 10 17
|
ovmpo |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 ( 𝑥 ∈ 𝑉 , 𝑦 ∈ 𝑉 ↦ ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑥 ) ) 𝑌 ) = ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) ) |
19 |
8 9 18
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ( 𝑥 ∈ 𝑉 , 𝑦 ∈ 𝑉 ↦ ( ( 𝑆 ‘ 𝑦 ) ‘ 𝑥 ) ) 𝑌 ) = ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) ) |
20 |
13 19
|
eqtrd |
⊢ ( 𝜑 → ( 𝑋 , 𝑌 ) = ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) ) |