Metamath Proof Explorer


Theorem hlhilipval

Description: Value of inner product operation for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015) (Revised by Mario Carneiro, 28-Jun-2015)

Ref Expression
Hypotheses hlhilip.h 𝐻 = ( LHyp ‘ 𝐾 )
hlhilip.l 𝐿 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hlhilip.v 𝑉 = ( Base ‘ 𝐿 )
hlhilip.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hlhilip.u 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 )
hlhilip.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hlhilip.i , = ( ·𝑖𝑈 )
hlhilip.x ( 𝜑𝑋𝑉 )
hlhilip.y ( 𝜑𝑌𝑉 )
Assertion hlhilipval ( 𝜑 → ( 𝑋 , 𝑌 ) = ( ( 𝑆𝑌 ) ‘ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 hlhilip.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hlhilip.l 𝐿 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hlhilip.v 𝑉 = ( Base ‘ 𝐿 )
4 hlhilip.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
5 hlhilip.u 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 )
6 hlhilip.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
7 hlhilip.i , = ( ·𝑖𝑈 )
8 hlhilip.x ( 𝜑𝑋𝑉 )
9 hlhilip.y ( 𝜑𝑌𝑉 )
10 eqid ( 𝑥𝑉 , 𝑦𝑉 ↦ ( ( 𝑆𝑦 ) ‘ 𝑥 ) ) = ( 𝑥𝑉 , 𝑦𝑉 ↦ ( ( 𝑆𝑦 ) ‘ 𝑥 ) )
11 1 2 3 4 5 6 10 hlhilip ( 𝜑 → ( 𝑥𝑉 , 𝑦𝑉 ↦ ( ( 𝑆𝑦 ) ‘ 𝑥 ) ) = ( ·𝑖𝑈 ) )
12 7 11 eqtr4id ( 𝜑, = ( 𝑥𝑉 , 𝑦𝑉 ↦ ( ( 𝑆𝑦 ) ‘ 𝑥 ) ) )
13 12 oveqd ( 𝜑 → ( 𝑋 , 𝑌 ) = ( 𝑋 ( 𝑥𝑉 , 𝑦𝑉 ↦ ( ( 𝑆𝑦 ) ‘ 𝑥 ) ) 𝑌 ) )
14 fveq2 ( 𝑥 = 𝑋 → ( ( 𝑆𝑦 ) ‘ 𝑥 ) = ( ( 𝑆𝑦 ) ‘ 𝑋 ) )
15 fveq2 ( 𝑦 = 𝑌 → ( 𝑆𝑦 ) = ( 𝑆𝑌 ) )
16 15 fveq1d ( 𝑦 = 𝑌 → ( ( 𝑆𝑦 ) ‘ 𝑋 ) = ( ( 𝑆𝑌 ) ‘ 𝑋 ) )
17 fvex ( ( 𝑆𝑌 ) ‘ 𝑋 ) ∈ V
18 14 16 10 17 ovmpo ( ( 𝑋𝑉𝑌𝑉 ) → ( 𝑋 ( 𝑥𝑉 , 𝑦𝑉 ↦ ( ( 𝑆𝑦 ) ‘ 𝑥 ) ) 𝑌 ) = ( ( 𝑆𝑌 ) ‘ 𝑋 ) )
19 8 9 18 syl2anc ( 𝜑 → ( 𝑋 ( 𝑥𝑉 , 𝑦𝑉 ↦ ( ( 𝑆𝑦 ) ‘ 𝑥 ) ) 𝑌 ) = ( ( 𝑆𝑌 ) ‘ 𝑋 ) )
20 13 19 eqtrd ( 𝜑 → ( 𝑋 , 𝑌 ) = ( ( 𝑆𝑌 ) ‘ 𝑋 ) )