Metamath Proof Explorer


Theorem hlhilipval

Description: Value of inner product operation for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015) (Revised by Mario Carneiro, 28-Jun-2015)

Ref Expression
Hypotheses hlhilip.h
|- H = ( LHyp ` K )
hlhilip.l
|- L = ( ( DVecH ` K ) ` W )
hlhilip.v
|- V = ( Base ` L )
hlhilip.s
|- S = ( ( HDMap ` K ) ` W )
hlhilip.u
|- U = ( ( HLHil ` K ) ` W )
hlhilip.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hlhilip.i
|- ., = ( .i ` U )
hlhilip.x
|- ( ph -> X e. V )
hlhilip.y
|- ( ph -> Y e. V )
Assertion hlhilipval
|- ( ph -> ( X ., Y ) = ( ( S ` Y ) ` X ) )

Proof

Step Hyp Ref Expression
1 hlhilip.h
 |-  H = ( LHyp ` K )
2 hlhilip.l
 |-  L = ( ( DVecH ` K ) ` W )
3 hlhilip.v
 |-  V = ( Base ` L )
4 hlhilip.s
 |-  S = ( ( HDMap ` K ) ` W )
5 hlhilip.u
 |-  U = ( ( HLHil ` K ) ` W )
6 hlhilip.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
7 hlhilip.i
 |-  ., = ( .i ` U )
8 hlhilip.x
 |-  ( ph -> X e. V )
9 hlhilip.y
 |-  ( ph -> Y e. V )
10 eqid
 |-  ( x e. V , y e. V |-> ( ( S ` y ) ` x ) ) = ( x e. V , y e. V |-> ( ( S ` y ) ` x ) )
11 1 2 3 4 5 6 10 hlhilip
 |-  ( ph -> ( x e. V , y e. V |-> ( ( S ` y ) ` x ) ) = ( .i ` U ) )
12 7 11 eqtr4id
 |-  ( ph -> ., = ( x e. V , y e. V |-> ( ( S ` y ) ` x ) ) )
13 12 oveqd
 |-  ( ph -> ( X ., Y ) = ( X ( x e. V , y e. V |-> ( ( S ` y ) ` x ) ) Y ) )
14 fveq2
 |-  ( x = X -> ( ( S ` y ) ` x ) = ( ( S ` y ) ` X ) )
15 fveq2
 |-  ( y = Y -> ( S ` y ) = ( S ` Y ) )
16 15 fveq1d
 |-  ( y = Y -> ( ( S ` y ) ` X ) = ( ( S ` Y ) ` X ) )
17 fvex
 |-  ( ( S ` Y ) ` X ) e. _V
18 14 16 10 17 ovmpo
 |-  ( ( X e. V /\ Y e. V ) -> ( X ( x e. V , y e. V |-> ( ( S ` y ) ` x ) ) Y ) = ( ( S ` Y ) ` X ) )
19 8 9 18 syl2anc
 |-  ( ph -> ( X ( x e. V , y e. V |-> ( ( S ` y ) ` x ) ) Y ) = ( ( S ` Y ) ` X ) )
20 13 19 eqtrd
 |-  ( ph -> ( X ., Y ) = ( ( S ` Y ) ` X ) )