Metamath Proof Explorer


Theorem hlhilvsca

Description: The scalar product for the final constructed Hilbert space. (Contributed by NM, 21-Jun-2015) (Revised by Mario Carneiro, 28-Jun-2015)

Ref Expression
Hypotheses hlhilvsca.h 𝐻 = ( LHyp ‘ 𝐾 )
hlhilvsca.l 𝐿 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hlhilvsca.t · = ( ·𝑠𝐿 )
hlhilvsca.u 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 )
hlhilvsca.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
Assertion hlhilvsca ( 𝜑· = ( ·𝑠𝑈 ) )

Proof

Step Hyp Ref Expression
1 hlhilvsca.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hlhilvsca.l 𝐿 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hlhilvsca.t · = ( ·𝑠𝐿 )
4 hlhilvsca.u 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 )
5 hlhilvsca.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
6 3 fvexi · ∈ V
7 eqid ( { ⟨ ( Base ‘ ndx ) , ( Base ‘ 𝐿 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝐿 ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐿 ) , 𝑦 ∈ ( Base ‘ 𝐿 ) ↦ ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) ) ⟩ } ) = ( { ⟨ ( Base ‘ ndx ) , ( Base ‘ 𝐿 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝐿 ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐿 ) , 𝑦 ∈ ( Base ‘ 𝐿 ) ↦ ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) ) ⟩ } )
8 7 phlvsca ( · ∈ V → · = ( ·𝑠 ‘ ( { ⟨ ( Base ‘ ndx ) , ( Base ‘ 𝐿 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝐿 ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐿 ) , 𝑦 ∈ ( Base ‘ 𝐿 ) ↦ ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) ) ⟩ } ) ) )
9 6 8 ax-mp · = ( ·𝑠 ‘ ( { ⟨ ( Base ‘ ndx ) , ( Base ‘ 𝐿 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝐿 ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐿 ) , 𝑦 ∈ ( Base ‘ 𝐿 ) ↦ ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) ) ⟩ } ) )
10 eqid ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 )
11 eqid ( +g𝐿 ) = ( +g𝐿 )
12 eqid ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )
13 eqid ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 )
14 eqid ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) = ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ )
15 eqid ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
16 eqid ( 𝑥 ∈ ( Base ‘ 𝐿 ) , 𝑦 ∈ ( Base ‘ 𝐿 ) ↦ ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐿 ) , 𝑦 ∈ ( Base ‘ 𝐿 ) ↦ ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) )
17 1 4 2 10 11 12 13 14 3 15 16 5 hlhilset ( 𝜑𝑈 = ( { ⟨ ( Base ‘ ndx ) , ( Base ‘ 𝐿 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝐿 ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐿 ) , 𝑦 ∈ ( Base ‘ 𝐿 ) ↦ ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) ) ⟩ } ) )
18 17 fveq2d ( 𝜑 → ( ·𝑠𝑈 ) = ( ·𝑠 ‘ ( { ⟨ ( Base ‘ ndx ) , ( Base ‘ 𝐿 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝐿 ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet ⟨ ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) ⟩ ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , · ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐿 ) , 𝑦 ∈ ( Base ‘ 𝐿 ) ↦ ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) ) ⟩ } ) ) )
19 9 18 eqtr4id ( 𝜑· = ( ·𝑠𝑈 ) )