Step |
Hyp |
Ref |
Expression |
1 |
|
hlhilvsca.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hlhilvsca.l |
⊢ 𝐿 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hlhilvsca.t |
⊢ · = ( ·𝑠 ‘ 𝐿 ) |
4 |
|
hlhilvsca.u |
⊢ 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
hlhilvsca.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
6 |
3
|
fvexi |
⊢ · ∈ V |
7 |
|
eqid |
⊢ ( { 〈 ( Base ‘ ndx ) , ( Base ‘ 𝐿 ) 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝐿 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐿 ) , 𝑦 ∈ ( Base ‘ 𝐿 ) ↦ ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } ) = ( { 〈 ( Base ‘ ndx ) , ( Base ‘ 𝐿 ) 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝐿 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐿 ) , 𝑦 ∈ ( Base ‘ 𝐿 ) ↦ ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } ) |
8 |
7
|
phlvsca |
⊢ ( · ∈ V → · = ( ·𝑠 ‘ ( { 〈 ( Base ‘ ndx ) , ( Base ‘ 𝐿 ) 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝐿 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐿 ) , 𝑦 ∈ ( Base ‘ 𝐿 ) ↦ ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } ) ) ) |
9 |
6 8
|
ax-mp |
⊢ · = ( ·𝑠 ‘ ( { 〈 ( Base ‘ ndx ) , ( Base ‘ 𝐿 ) 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝐿 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐿 ) , 𝑦 ∈ ( Base ‘ 𝐿 ) ↦ ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } ) ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
11 |
|
eqid |
⊢ ( +g ‘ 𝐿 ) = ( +g ‘ 𝐿 ) |
12 |
|
eqid |
⊢ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) |
13 |
|
eqid |
⊢ ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) |
14 |
|
eqid |
⊢ ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) = ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) |
15 |
|
eqid |
⊢ ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
16 |
|
eqid |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐿 ) , 𝑦 ∈ ( Base ‘ 𝐿 ) ↦ ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐿 ) , 𝑦 ∈ ( Base ‘ 𝐿 ) ↦ ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) ) |
17 |
1 4 2 10 11 12 13 14 3 15 16 5
|
hlhilset |
⊢ ( 𝜑 → 𝑈 = ( { 〈 ( Base ‘ ndx ) , ( Base ‘ 𝐿 ) 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝐿 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐿 ) , 𝑦 ∈ ( Base ‘ 𝐿 ) ↦ ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } ) ) |
18 |
17
|
fveq2d |
⊢ ( 𝜑 → ( ·𝑠 ‘ 𝑈 ) = ( ·𝑠 ‘ ( { 〈 ( Base ‘ ndx ) , ( Base ‘ 𝐿 ) 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝐿 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) sSet 〈 ( *𝑟 ‘ ndx ) , ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) 〉 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , · 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝐿 ) , 𝑦 ∈ ( Base ‘ 𝐿 ) ↦ ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑦 ) ‘ 𝑥 ) ) 〉 } ) ) ) |
19 |
9 18
|
eqtr4id |
⊢ ( 𝜑 → · = ( ·𝑠 ‘ 𝑈 ) ) |