Step |
Hyp |
Ref |
Expression |
1 |
|
hlhilsbase.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hlhilsbase.l |
⊢ 𝐿 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hlhilsbase.s |
⊢ 𝑆 = ( Scalar ‘ 𝐿 ) |
4 |
|
hlhilsbase.u |
⊢ 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
hlhilsbase.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
6 |
|
hlhilsbase.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
7 |
|
hlhils1.t |
⊢ 1 = ( 1r ‘ 𝑆 ) |
8 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
10 |
1 2 3 4 5 6 9
|
hlhilsbase2 |
⊢ ( 𝜑 → ( Base ‘ 𝑆 ) = ( Base ‘ 𝑅 ) ) |
11 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
12 |
1 2 3 4 5 6 11
|
hlhilsmul2 |
⊢ ( 𝜑 → ( .r ‘ 𝑆 ) = ( .r ‘ 𝑅 ) ) |
13 |
12
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) |
14 |
8 10 13
|
rngidpropd |
⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑅 ) ) |
15 |
7 14
|
syl5eq |
⊢ ( 𝜑 → 1 = ( 1r ‘ 𝑅 ) ) |