Metamath Proof Explorer


Theorem hlhilsbase2

Description: The scalar base set of the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015) (Revised by Mario Carneiro, 28-Jun-2015)

Ref Expression
Hypotheses hlhilsbase.h 𝐻 = ( LHyp ‘ 𝐾 )
hlhilsbase.l 𝐿 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hlhilsbase.s 𝑆 = ( Scalar ‘ 𝐿 )
hlhilsbase.u 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 )
hlhilsbase.r 𝑅 = ( Scalar ‘ 𝑈 )
hlhilsbase.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hlhilsbase2.c 𝐶 = ( Base ‘ 𝑆 )
Assertion hlhilsbase2 ( 𝜑𝐶 = ( Base ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 hlhilsbase.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hlhilsbase.l 𝐿 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hlhilsbase.s 𝑆 = ( Scalar ‘ 𝐿 )
4 hlhilsbase.u 𝑈 = ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 )
5 hlhilsbase.r 𝑅 = ( Scalar ‘ 𝑈 )
6 hlhilsbase.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
7 hlhilsbase2.c 𝐶 = ( Base ‘ 𝑆 )
8 eqid ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )
9 1 8 2 3 dvhsca ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝑆 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) )
10 6 9 syl ( 𝜑𝑆 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) )
11 10 fveq2d ( 𝜑 → ( Base ‘ 𝑆 ) = ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) )
12 7 11 syl5eq ( 𝜑𝐶 = ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) )
13 eqid ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) )
14 1 8 4 5 6 13 hlhilsbase ( 𝜑 → ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ 𝑅 ) )
15 12 14 eqtrd ( 𝜑𝐶 = ( Base ‘ 𝑅 ) )