| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hlhilsbase.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hlhilsbase.l | ⊢ 𝐿  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hlhilsbase.s | ⊢ 𝑆  =  ( Scalar ‘ 𝐿 ) | 
						
							| 4 |  | hlhilsbase.u | ⊢ 𝑈  =  ( ( HLHil ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 5 |  | hlhilsbase.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 6 |  | hlhilsbase.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 7 |  | hlhilsplus2.a | ⊢  +   =  ( +g ‘ 𝑆 ) | 
						
							| 8 |  | eqid | ⊢ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 9 | 1 8 2 3 | dvhsca | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  𝑆  =  ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 10 | 6 9 | syl | ⊢ ( 𝜑  →  𝑆  =  ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( 𝜑  →  ( +g ‘ 𝑆 )  =  ( +g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 12 | 7 11 | eqtrid | ⊢ ( 𝜑  →   +   =  ( +g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 13 |  | eqid | ⊢ ( +g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( +g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 14 | 1 8 4 5 6 13 | hlhilsplus | ⊢ ( 𝜑  →  ( +g ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( +g ‘ 𝑅 ) ) | 
						
							| 15 | 12 14 | eqtrd | ⊢ ( 𝜑  →   +   =  ( +g ‘ 𝑅 ) ) |