Description: A sequence with a limit on a Hilbert space is a sequence. (Contributed by NM, 16-Aug-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | hlim.1 | |- A e. _V |
|
Assertion | hlimseqi | |- ( F ~~>v A -> F : NN --> ~H ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlim.1 | |- A e. _V |
|
2 | 1 | hlimi | |- ( F ~~>v A <-> ( ( F : NN --> ~H /\ A e. ~H ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) |
3 | 2 | simplbi | |- ( F ~~>v A -> ( F : NN --> ~H /\ A e. ~H ) ) |
4 | 3 | simpld | |- ( F ~~>v A -> F : NN --> ~H ) |