Metamath Proof Explorer


Theorem hlimseqi

Description: A sequence with a limit on a Hilbert space is a sequence. (Contributed by NM, 16-Aug-1999) (New usage is discouraged.)

Ref Expression
Hypothesis hlim.1
|- A e. _V
Assertion hlimseqi
|- ( F ~~>v A -> F : NN --> ~H )

Proof

Step Hyp Ref Expression
1 hlim.1
 |-  A e. _V
2 1 hlimi
 |-  ( F ~~>v A <-> ( ( F : NN --> ~H /\ A e. ~H ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) )
3 2 simplbi
 |-  ( F ~~>v A -> ( F : NN --> ~H /\ A e. ~H ) )
4 3 simpld
 |-  ( F ~~>v A -> F : NN --> ~H )