Step |
Hyp |
Ref |
Expression |
1 |
|
hlim.1 |
|- A e. _V |
2 |
|
df-hlim |
|- ~~>v = { <. f , w >. | ( ( f : NN --> ~H /\ w e. ~H ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` z ) -h w ) ) < x ) } |
3 |
2
|
relopabiv |
|- Rel ~~>v |
4 |
3
|
brrelex1i |
|- ( F ~~>v A -> F e. _V ) |
5 |
|
nnex |
|- NN e. _V |
6 |
|
fex |
|- ( ( F : NN --> ~H /\ NN e. _V ) -> F e. _V ) |
7 |
5 6
|
mpan2 |
|- ( F : NN --> ~H -> F e. _V ) |
8 |
7
|
ad2antrr |
|- ( ( ( F : NN --> ~H /\ A e. ~H ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) -> F e. _V ) |
9 |
|
feq1 |
|- ( f = F -> ( f : NN --> ~H <-> F : NN --> ~H ) ) |
10 |
|
eleq1 |
|- ( w = A -> ( w e. ~H <-> A e. ~H ) ) |
11 |
9 10
|
bi2anan9 |
|- ( ( f = F /\ w = A ) -> ( ( f : NN --> ~H /\ w e. ~H ) <-> ( F : NN --> ~H /\ A e. ~H ) ) ) |
12 |
|
fveq1 |
|- ( f = F -> ( f ` z ) = ( F ` z ) ) |
13 |
|
oveq12 |
|- ( ( ( f ` z ) = ( F ` z ) /\ w = A ) -> ( ( f ` z ) -h w ) = ( ( F ` z ) -h A ) ) |
14 |
12 13
|
sylan |
|- ( ( f = F /\ w = A ) -> ( ( f ` z ) -h w ) = ( ( F ` z ) -h A ) ) |
15 |
14
|
fveq2d |
|- ( ( f = F /\ w = A ) -> ( normh ` ( ( f ` z ) -h w ) ) = ( normh ` ( ( F ` z ) -h A ) ) ) |
16 |
15
|
breq1d |
|- ( ( f = F /\ w = A ) -> ( ( normh ` ( ( f ` z ) -h w ) ) < x <-> ( normh ` ( ( F ` z ) -h A ) ) < x ) ) |
17 |
16
|
rexralbidv |
|- ( ( f = F /\ w = A ) -> ( E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` z ) -h w ) ) < x <-> E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) |
18 |
17
|
ralbidv |
|- ( ( f = F /\ w = A ) -> ( A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` z ) -h w ) ) < x <-> A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) |
19 |
11 18
|
anbi12d |
|- ( ( f = F /\ w = A ) -> ( ( ( f : NN --> ~H /\ w e. ~H ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` z ) -h w ) ) < x ) <-> ( ( F : NN --> ~H /\ A e. ~H ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) ) |
20 |
19 2
|
brabga |
|- ( ( F e. _V /\ A e. _V ) -> ( F ~~>v A <-> ( ( F : NN --> ~H /\ A e. ~H ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) ) |
21 |
1 20
|
mpan2 |
|- ( F e. _V -> ( F ~~>v A <-> ( ( F : NN --> ~H /\ A e. ~H ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) ) |
22 |
4 8 21
|
pm5.21nii |
|- ( F ~~>v A <-> ( ( F : NN --> ~H /\ A e. ~H ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) |