Metamath Proof Explorer


Theorem hlimi

Description: Express the predicate: The limit of vector sequence F in a Hilbert space is A , i.e. F converges to A . This means that for any real x , no matter how small, there always exists an integer y such that the norm of any later vector in the sequence minus the limit is less than x . Definition of converge in Beran p. 96. (Contributed by NM, 16-Aug-1999) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)

Ref Expression
Hypothesis hlim.1 𝐴 ∈ V
Assertion hlimi ( 𝐹𝑣 𝐴 ↔ ( ( 𝐹 : ℕ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) ∧ ∀ 𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ𝑦 ) ( norm ‘ ( ( 𝐹𝑧 ) − 𝐴 ) ) < 𝑥 ) )

Proof

Step Hyp Ref Expression
1 hlim.1 𝐴 ∈ V
2 df-hlim 𝑣 = { ⟨ 𝑓 , 𝑤 ⟩ ∣ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑤 ∈ ℋ ) ∧ ∀ 𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ𝑦 ) ( norm ‘ ( ( 𝑓𝑧 ) − 𝑤 ) ) < 𝑥 ) }
3 2 relopabiv Rel ⇝𝑣
4 3 brrelex1i ( 𝐹𝑣 𝐴𝐹 ∈ V )
5 nnex ℕ ∈ V
6 fex ( ( 𝐹 : ℕ ⟶ ℋ ∧ ℕ ∈ V ) → 𝐹 ∈ V )
7 5 6 mpan2 ( 𝐹 : ℕ ⟶ ℋ → 𝐹 ∈ V )
8 7 ad2antrr ( ( ( 𝐹 : ℕ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) ∧ ∀ 𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ𝑦 ) ( norm ‘ ( ( 𝐹𝑧 ) − 𝐴 ) ) < 𝑥 ) → 𝐹 ∈ V )
9 feq1 ( 𝑓 = 𝐹 → ( 𝑓 : ℕ ⟶ ℋ ↔ 𝐹 : ℕ ⟶ ℋ ) )
10 eleq1 ( 𝑤 = 𝐴 → ( 𝑤 ∈ ℋ ↔ 𝐴 ∈ ℋ ) )
11 9 10 bi2anan9 ( ( 𝑓 = 𝐹𝑤 = 𝐴 ) → ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑤 ∈ ℋ ) ↔ ( 𝐹 : ℕ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) ) )
12 fveq1 ( 𝑓 = 𝐹 → ( 𝑓𝑧 ) = ( 𝐹𝑧 ) )
13 oveq12 ( ( ( 𝑓𝑧 ) = ( 𝐹𝑧 ) ∧ 𝑤 = 𝐴 ) → ( ( 𝑓𝑧 ) − 𝑤 ) = ( ( 𝐹𝑧 ) − 𝐴 ) )
14 12 13 sylan ( ( 𝑓 = 𝐹𝑤 = 𝐴 ) → ( ( 𝑓𝑧 ) − 𝑤 ) = ( ( 𝐹𝑧 ) − 𝐴 ) )
15 14 fveq2d ( ( 𝑓 = 𝐹𝑤 = 𝐴 ) → ( norm ‘ ( ( 𝑓𝑧 ) − 𝑤 ) ) = ( norm ‘ ( ( 𝐹𝑧 ) − 𝐴 ) ) )
16 15 breq1d ( ( 𝑓 = 𝐹𝑤 = 𝐴 ) → ( ( norm ‘ ( ( 𝑓𝑧 ) − 𝑤 ) ) < 𝑥 ↔ ( norm ‘ ( ( 𝐹𝑧 ) − 𝐴 ) ) < 𝑥 ) )
17 16 rexralbidv ( ( 𝑓 = 𝐹𝑤 = 𝐴 ) → ( ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ𝑦 ) ( norm ‘ ( ( 𝑓𝑧 ) − 𝑤 ) ) < 𝑥 ↔ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ𝑦 ) ( norm ‘ ( ( 𝐹𝑧 ) − 𝐴 ) ) < 𝑥 ) )
18 17 ralbidv ( ( 𝑓 = 𝐹𝑤 = 𝐴 ) → ( ∀ 𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ𝑦 ) ( norm ‘ ( ( 𝑓𝑧 ) − 𝑤 ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ𝑦 ) ( norm ‘ ( ( 𝐹𝑧 ) − 𝐴 ) ) < 𝑥 ) )
19 11 18 anbi12d ( ( 𝑓 = 𝐹𝑤 = 𝐴 ) → ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑤 ∈ ℋ ) ∧ ∀ 𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ𝑦 ) ( norm ‘ ( ( 𝑓𝑧 ) − 𝑤 ) ) < 𝑥 ) ↔ ( ( 𝐹 : ℕ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) ∧ ∀ 𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ𝑦 ) ( norm ‘ ( ( 𝐹𝑧 ) − 𝐴 ) ) < 𝑥 ) ) )
20 19 2 brabga ( ( 𝐹 ∈ V ∧ 𝐴 ∈ V ) → ( 𝐹𝑣 𝐴 ↔ ( ( 𝐹 : ℕ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) ∧ ∀ 𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ𝑦 ) ( norm ‘ ( ( 𝐹𝑧 ) − 𝐴 ) ) < 𝑥 ) ) )
21 1 20 mpan2 ( 𝐹 ∈ V → ( 𝐹𝑣 𝐴 ↔ ( ( 𝐹 : ℕ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) ∧ ∀ 𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ𝑦 ) ( norm ‘ ( ( 𝐹𝑧 ) − 𝐴 ) ) < 𝑥 ) ) )
22 4 8 21 pm5.21nii ( 𝐹𝑣 𝐴 ↔ ( ( 𝐹 : ℕ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) ∧ ∀ 𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ𝑦 ) ( norm ‘ ( ( 𝐹𝑧 ) − 𝐴 ) ) < 𝑥 ) )