Step |
Hyp |
Ref |
Expression |
1 |
|
hlim.1 |
⊢ 𝐴 ∈ V |
2 |
|
df-hlim |
⊢ ⇝𝑣 = { 〈 𝑓 , 𝑤 〉 ∣ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑤 ∈ ℋ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑧 ) −ℎ 𝑤 ) ) < 𝑥 ) } |
3 |
2
|
relopabiv |
⊢ Rel ⇝𝑣 |
4 |
3
|
brrelex1i |
⊢ ( 𝐹 ⇝𝑣 𝐴 → 𝐹 ∈ V ) |
5 |
|
nnex |
⊢ ℕ ∈ V |
6 |
|
fex |
⊢ ( ( 𝐹 : ℕ ⟶ ℋ ∧ ℕ ∈ V ) → 𝐹 ∈ V ) |
7 |
5 6
|
mpan2 |
⊢ ( 𝐹 : ℕ ⟶ ℋ → 𝐹 ∈ V ) |
8 |
7
|
ad2antrr |
⊢ ( ( ( 𝐹 : ℕ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ) → 𝐹 ∈ V ) |
9 |
|
feq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 : ℕ ⟶ ℋ ↔ 𝐹 : ℕ ⟶ ℋ ) ) |
10 |
|
eleq1 |
⊢ ( 𝑤 = 𝐴 → ( 𝑤 ∈ ℋ ↔ 𝐴 ∈ ℋ ) ) |
11 |
9 10
|
bi2anan9 |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝐴 ) → ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑤 ∈ ℋ ) ↔ ( 𝐹 : ℕ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) ) ) |
12 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
13 |
|
oveq12 |
⊢ ( ( ( 𝑓 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑤 = 𝐴 ) → ( ( 𝑓 ‘ 𝑧 ) −ℎ 𝑤 ) = ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) |
14 |
12 13
|
sylan |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝐴 ) → ( ( 𝑓 ‘ 𝑧 ) −ℎ 𝑤 ) = ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) |
15 |
14
|
fveq2d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝐴 ) → ( normℎ ‘ ( ( 𝑓 ‘ 𝑧 ) −ℎ 𝑤 ) ) = ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) ) |
16 |
15
|
breq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝐴 ) → ( ( normℎ ‘ ( ( 𝑓 ‘ 𝑧 ) −ℎ 𝑤 ) ) < 𝑥 ↔ ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ) ) |
17 |
16
|
rexralbidv |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝐴 ) → ( ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑧 ) −ℎ 𝑤 ) ) < 𝑥 ↔ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ) ) |
18 |
17
|
ralbidv |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝐴 ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑧 ) −ℎ 𝑤 ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ) ) |
19 |
11 18
|
anbi12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝐴 ) → ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑤 ∈ ℋ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑧 ) −ℎ 𝑤 ) ) < 𝑥 ) ↔ ( ( 𝐹 : ℕ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ) ) ) |
20 |
19 2
|
brabga |
⊢ ( ( 𝐹 ∈ V ∧ 𝐴 ∈ V ) → ( 𝐹 ⇝𝑣 𝐴 ↔ ( ( 𝐹 : ℕ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ) ) ) |
21 |
1 20
|
mpan2 |
⊢ ( 𝐹 ∈ V → ( 𝐹 ⇝𝑣 𝐴 ↔ ( ( 𝐹 : ℕ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ) ) ) |
22 |
4 8 21
|
pm5.21nii |
⊢ ( 𝐹 ⇝𝑣 𝐴 ↔ ( ( 𝐹 : ℕ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ) ) |