Description: The class of all complex Hilbert spaces is a relation. (Contributed by NM, 17-Mar-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hlrel | |- Rel CHilOLD | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hlobn | |- ( x e. CHilOLD -> x e. CBan ) | |
| 2 | 1 | ssriv | |- CHilOLD C_ CBan | 
| 3 | bnrel | |- Rel CBan | |
| 4 | relss | |- ( CHilOLD C_ CBan -> ( Rel CBan -> Rel CHilOLD ) ) | |
| 5 | 2 3 4 | mp2 | |- Rel CHilOLD |