| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hmphen |
|- ( J ~= { (/) } -> J ~~ { (/) } ) |
| 2 |
|
df1o2 |
|- 1o = { (/) } |
| 3 |
1 2
|
breqtrrdi |
|- ( J ~= { (/) } -> J ~~ 1o ) |
| 4 |
|
hmphtop1 |
|- ( J ~= { (/) } -> J e. Top ) |
| 5 |
|
en1top |
|- ( J e. Top -> ( J ~~ 1o <-> J = { (/) } ) ) |
| 6 |
4 5
|
syl |
|- ( J ~= { (/) } -> ( J ~~ 1o <-> J = { (/) } ) ) |
| 7 |
3 6
|
mpbid |
|- ( J ~= { (/) } -> J = { (/) } ) |
| 8 |
|
id |
|- ( J = { (/) } -> J = { (/) } ) |
| 9 |
|
sn0top |
|- { (/) } e. Top |
| 10 |
|
hmphref |
|- ( { (/) } e. Top -> { (/) } ~= { (/) } ) |
| 11 |
9 10
|
ax-mp |
|- { (/) } ~= { (/) } |
| 12 |
8 11
|
eqbrtrdi |
|- ( J = { (/) } -> J ~= { (/) } ) |
| 13 |
7 12
|
impbii |
|- ( J ~= { (/) } <-> J = { (/) } ) |