Metamath Proof Explorer


Theorem hmph0

Description: A topology homeomorphic to the empty set is empty. (Contributed by FL, 18-Aug-2008) (Revised by Mario Carneiro, 10-Sep-2015)

Ref Expression
Assertion hmph0 JJ=

Proof

Step Hyp Ref Expression
1 hmphen JJ
2 df1o2 1𝑜=
3 1 2 breqtrrdi JJ1𝑜
4 hmphtop1 JJTop
5 en1top JTopJ1𝑜J=
6 4 5 syl JJ1𝑜J=
7 3 6 mpbid JJ=
8 id J=J=
9 sn0top Top
10 hmphref Top
11 9 10 ax-mp
12 8 11 eqbrtrdi J=J
13 7 12 impbii JJ=