Description: Reverse closure for the homeomorphic predicate. (Contributed by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hmphtop | |- ( J ~= K -> ( J e. Top /\ K e. Top ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-hmph | |- ~= = ( `' Homeo " ( _V \ 1o ) ) |
|
| 2 | cnvimass | |- ( `' Homeo " ( _V \ 1o ) ) C_ dom Homeo |
|
| 3 | hmeofn | |- Homeo Fn ( Top X. Top ) |
|
| 4 | fndm | |- ( Homeo Fn ( Top X. Top ) -> dom Homeo = ( Top X. Top ) ) |
|
| 5 | 3 4 | ax-mp | |- dom Homeo = ( Top X. Top ) |
| 6 | 2 5 | sseqtri | |- ( `' Homeo " ( _V \ 1o ) ) C_ ( Top X. Top ) |
| 7 | 1 6 | eqsstri | |- ~= C_ ( Top X. Top ) |
| 8 | 7 | brel | |- ( J ~= K -> ( J e. Top /\ K e. Top ) ) |