| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hoaddrid.1 |
|- T : ~H --> ~H |
| 2 |
1
|
ffvelcdmi |
|- ( x e. ~H -> ( T ` x ) e. ~H ) |
| 3 |
|
ho0val |
|- ( ( T ` x ) e. ~H -> ( 0hop ` ( T ` x ) ) = 0h ) |
| 4 |
2 3
|
syl |
|- ( x e. ~H -> ( 0hop ` ( T ` x ) ) = 0h ) |
| 5 |
|
ho0f |
|- 0hop : ~H --> ~H |
| 6 |
5 1
|
hocoi |
|- ( x e. ~H -> ( ( 0hop o. T ) ` x ) = ( 0hop ` ( T ` x ) ) ) |
| 7 |
|
ho0val |
|- ( x e. ~H -> ( 0hop ` x ) = 0h ) |
| 8 |
4 6 7
|
3eqtr4d |
|- ( x e. ~H -> ( ( 0hop o. T ) ` x ) = ( 0hop ` x ) ) |
| 9 |
8
|
rgen |
|- A. x e. ~H ( ( 0hop o. T ) ` x ) = ( 0hop ` x ) |
| 10 |
5 1
|
hocofi |
|- ( 0hop o. T ) : ~H --> ~H |
| 11 |
10 5
|
hoeqi |
|- ( A. x e. ~H ( ( 0hop o. T ) ` x ) = ( 0hop ` x ) <-> ( 0hop o. T ) = 0hop ) |
| 12 |
9 11
|
mpbi |
|- ( 0hop o. T ) = 0hop |