| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hoaddrid.1 |
⊢ 𝑇 : ℋ ⟶ ℋ |
| 2 |
1
|
ffvelcdmi |
⊢ ( 𝑥 ∈ ℋ → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 3 |
|
ho0val |
⊢ ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ → ( 0hop ‘ ( 𝑇 ‘ 𝑥 ) ) = 0ℎ ) |
| 4 |
2 3
|
syl |
⊢ ( 𝑥 ∈ ℋ → ( 0hop ‘ ( 𝑇 ‘ 𝑥 ) ) = 0ℎ ) |
| 5 |
|
ho0f |
⊢ 0hop : ℋ ⟶ ℋ |
| 6 |
5 1
|
hocoi |
⊢ ( 𝑥 ∈ ℋ → ( ( 0hop ∘ 𝑇 ) ‘ 𝑥 ) = ( 0hop ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
| 7 |
|
ho0val |
⊢ ( 𝑥 ∈ ℋ → ( 0hop ‘ 𝑥 ) = 0ℎ ) |
| 8 |
4 6 7
|
3eqtr4d |
⊢ ( 𝑥 ∈ ℋ → ( ( 0hop ∘ 𝑇 ) ‘ 𝑥 ) = ( 0hop ‘ 𝑥 ) ) |
| 9 |
8
|
rgen |
⊢ ∀ 𝑥 ∈ ℋ ( ( 0hop ∘ 𝑇 ) ‘ 𝑥 ) = ( 0hop ‘ 𝑥 ) |
| 10 |
5 1
|
hocofi |
⊢ ( 0hop ∘ 𝑇 ) : ℋ ⟶ ℋ |
| 11 |
10 5
|
hoeqi |
⊢ ( ∀ 𝑥 ∈ ℋ ( ( 0hop ∘ 𝑇 ) ‘ 𝑥 ) = ( 0hop ‘ 𝑥 ) ↔ ( 0hop ∘ 𝑇 ) = 0hop ) |
| 12 |
9 11
|
mpbi |
⊢ ( 0hop ∘ 𝑇 ) = 0hop |