Step |
Hyp |
Ref |
Expression |
1 |
|
hoidmvn0val.l |
|- L = ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) ) |
2 |
|
hoidmvn0val.x |
|- ( ph -> X e. Fin ) |
3 |
|
hoidmvn0val.n |
|- ( ph -> X =/= (/) ) |
4 |
|
hoidmvn0val.a |
|- ( ph -> A : X --> RR ) |
5 |
|
hoidmvn0val.b |
|- ( ph -> B : X --> RR ) |
6 |
1 4 5 2
|
hoidmvval |
|- ( ph -> ( A ( L ` X ) B ) = if ( X = (/) , 0 , prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) ) |
7 |
3
|
neneqd |
|- ( ph -> -. X = (/) ) |
8 |
7
|
iffalsed |
|- ( ph -> if ( X = (/) , 0 , prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) = prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) |
9 |
6 8
|
eqtrd |
|- ( ph -> ( A ( L ` X ) B ) = prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) |