Metamath Proof Explorer


Theorem hoidmvn0val

Description: The dimensional volume of a non-0-dimensional half-open interval. Definition 115A (c) of Fremlin1 p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses hoidmvn0val.l
|- L = ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) )
hoidmvn0val.x
|- ( ph -> X e. Fin )
hoidmvn0val.n
|- ( ph -> X =/= (/) )
hoidmvn0val.a
|- ( ph -> A : X --> RR )
hoidmvn0val.b
|- ( ph -> B : X --> RR )
Assertion hoidmvn0val
|- ( ph -> ( A ( L ` X ) B ) = prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) )

Proof

Step Hyp Ref Expression
1 hoidmvn0val.l
 |-  L = ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) )
2 hoidmvn0val.x
 |-  ( ph -> X e. Fin )
3 hoidmvn0val.n
 |-  ( ph -> X =/= (/) )
4 hoidmvn0val.a
 |-  ( ph -> A : X --> RR )
5 hoidmvn0val.b
 |-  ( ph -> B : X --> RR )
6 1 4 5 2 hoidmvval
 |-  ( ph -> ( A ( L ` X ) B ) = if ( X = (/) , 0 , prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) )
7 3 neneqd
 |-  ( ph -> -. X = (/) )
8 7 iffalsed
 |-  ( ph -> if ( X = (/) , 0 , prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) ) = prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) )
9 6 8 eqtrd
 |-  ( ph -> ( A ( L ` X ) B ) = prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) )