Step |
Hyp |
Ref |
Expression |
1 |
|
hoidmvn0val.l |
⊢ 𝐿 = ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) |
2 |
|
hoidmvn0val.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
3 |
|
hoidmvn0val.n |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
4 |
|
hoidmvn0val.a |
⊢ ( 𝜑 → 𝐴 : 𝑋 ⟶ ℝ ) |
5 |
|
hoidmvn0val.b |
⊢ ( 𝜑 → 𝐵 : 𝑋 ⟶ ℝ ) |
6 |
1 4 5 2
|
hoidmvval |
⊢ ( 𝜑 → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) = if ( 𝑋 = ∅ , 0 , ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) ) |
7 |
3
|
neneqd |
⊢ ( 𝜑 → ¬ 𝑋 = ∅ ) |
8 |
7
|
iffalsed |
⊢ ( 𝜑 → if ( 𝑋 = ∅ , 0 , ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
9 |
6 8
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |