Metamath Proof Explorer


Theorem hoidmvn0val

Description: The dimensional volume of a non-0-dimensional half-open interval. Definition 115A (c) of Fremlin1 p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses hoidmvn0val.l 𝐿 = ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) ) ) )
hoidmvn0val.x ( 𝜑𝑋 ∈ Fin )
hoidmvn0val.n ( 𝜑𝑋 ≠ ∅ )
hoidmvn0val.a ( 𝜑𝐴 : 𝑋 ⟶ ℝ )
hoidmvn0val.b ( 𝜑𝐵 : 𝑋 ⟶ ℝ )
Assertion hoidmvn0val ( 𝜑 → ( 𝐴 ( 𝐿𝑋 ) 𝐵 ) = ∏ 𝑘𝑋 ( vol ‘ ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ) )

Proof

Step Hyp Ref Expression
1 hoidmvn0val.l 𝐿 = ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) ) ) )
2 hoidmvn0val.x ( 𝜑𝑋 ∈ Fin )
3 hoidmvn0val.n ( 𝜑𝑋 ≠ ∅ )
4 hoidmvn0val.a ( 𝜑𝐴 : 𝑋 ⟶ ℝ )
5 hoidmvn0val.b ( 𝜑𝐵 : 𝑋 ⟶ ℝ )
6 1 4 5 2 hoidmvval ( 𝜑 → ( 𝐴 ( 𝐿𝑋 ) 𝐵 ) = if ( 𝑋 = ∅ , 0 , ∏ 𝑘𝑋 ( vol ‘ ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ) ) )
7 3 neneqd ( 𝜑 → ¬ 𝑋 = ∅ )
8 7 iffalsed ( 𝜑 → if ( 𝑋 = ∅ , 0 , ∏ 𝑘𝑋 ( vol ‘ ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ) ) = ∏ 𝑘𝑋 ( vol ‘ ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ) )
9 6 8 eqtrd ( 𝜑 → ( 𝐴 ( 𝐿𝑋 ) 𝐵 ) = ∏ 𝑘𝑋 ( vol ‘ ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ) )