| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hoidmvn0val.l |
⊢ 𝐿 = ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) |
| 2 |
|
hoidmvn0val.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 3 |
|
hoidmvn0val.n |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
| 4 |
|
hoidmvn0val.a |
⊢ ( 𝜑 → 𝐴 : 𝑋 ⟶ ℝ ) |
| 5 |
|
hoidmvn0val.b |
⊢ ( 𝜑 → 𝐵 : 𝑋 ⟶ ℝ ) |
| 6 |
1 4 5 2
|
hoidmvval |
⊢ ( 𝜑 → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) = if ( 𝑋 = ∅ , 0 , ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) ) |
| 7 |
3
|
neneqd |
⊢ ( 𝜑 → ¬ 𝑋 = ∅ ) |
| 8 |
7
|
iffalsed |
⊢ ( 𝜑 → if ( 𝑋 = ∅ , 0 , ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |
| 9 |
6 8
|
eqtrd |
⊢ ( 𝜑 → ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |